Crystal chemistry and optics of bazzite from Furkabasistunnel (Switzerland) (original) (raw)
Summary
The crystal structure of blue bazzite (space group P6/mcc, Z = 2, α = 9.501(1),c = 9.178(1) Å) with the composition Be3(Sc1.25Fe3+ 0.43Mg0.32Mn0.03Al0.02)Σ=2.05 Si6O18[Na0.32(n H2O)] was refined from X-ray single-crystal data with 422 unique reflections to R = 2.2%. The structure is of the beryl type with octahedra strongly compressed parallel to the c-axis. The octahedral Me-O distance in bazzite is 2.080 A compared to 1.904 Å in beryl. The flattening of octahedra leads to a larger a cell dimension in bazzite compared to beryl (9.209 A). Two-valent cations (mainly Mg) in octahedral coordination are charge balanced by Na at (0, 0, 0) in the structural channels. Polarized single-crystal IR-spectra recorded between 400 and 8000 cm−1 indicate that H2O in the structural channels is oriented with the H-H vector perpendicular to the_c_-axis. The IR-spectra show more absorption bands than known for type II H2O in beryl thus the existence of more than one H2O species or even OH-groups is very likely.
Refractive indices of the same bazzite were measured using a spindle-stage and employing the wavelength-temperature variation method yielding no = 1.6279(3), ne = 1.6066(5) for 589 nm at 25°C. The birefringence Δ = 0.0213 is significantly larger than the one of near end-member beryl (Δ = 0.0047). This high birefringence of bazzite is related to the electronic polarizability of octahedral Sc and Fe which increase no at a stronger rate than ne. Transition metals in bazzite are also responsible for a higher refractive index dispersion than found for beryl.
Zusammenfassung
Die Kristallstruktur eines blauen Bazzits (Raumgruppe P6/mcc, Z = 2,a = 9.501(1),c = 9.178(1) Å) mit der Zusammensetzung Be3(Sc1.25Fe3+ 0.43Mg0.32Mn0.03Al0.02)Σ2=2.05 Si6)O18[Na0.32(n H2O)] wurde von Röntgeneinkristalldaten mit 422 Reflexen zu R = 2.2% verfeinert. Die Struktur ist die des Berylltyps mit der Besonderheit, daß die Oktaeder entlang der c-Achse stark zusammengedrückt sind. Die oktaedrischen Me-O Abstände im Bazzit betragen 2.080 Å, im Gegensatz zu 1.904Å im Beryll. Die Stauchung der Oktaeder im Bazzit führt zu einer längeren a-Achse als im Beryll (9.209 Å). Zweiwertige Kationen (vor allem Mg) in oktaedrischer Koordination werden durch Na auf (0, 0, 0), in den strukturellen Kanalen, neutralisiert. Polarisierte Einkristall-IR-Spektren zwischen 400 and 8000 cm−1 zeigen, daß H2O Moleküle in den strukturellen Kanalen mit dem H-H Vektor senkrecht zur c-Achse orientiert sind. Die IR-Spektren weisen außerdem mehr Absorptionsbanden auf, als für den H2O Typ II bekannt sind, sodaß entweder mehr als eine H2O Spezies oder sogar OH-Gruppen sehr wahrscheinlich sind.
Brechungsindizes am gleichen Bazzit wurden auf einem Spindeltisch mit der Wellenlängen-Temperatur Variationsmethode gemessen und ergaben no = 1.6279(3), ne = 1.6066(5) bei 589 nm und 25 °C. Die Doppelbrechung A = 0.0210 ist deutlich höher als für einen nahezu Endgliedberyll (A = 0.0047). Diese hohe Doppelbrechung des Bazzits wird durch die elektronische Polarisierbarkeit von oktaedrischem Sc und Fe verursacht, die no starker ansteigen läßt als ne. Übergangselemente im Bazzit sind auch für die höhere Dispersion der Brechungsindizes als im Beryll verantwortlich.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
References
- Aines D, Rossman GR (1984) The high temperature behavior of water and carbon dioxide in cordierite and beryl. Am Mineral 69: 319–327
Google Scholar - Armbruster Th (1985) Kristalloptik transparenter Minerale im sichtbaren Licht. Fortschr Mineral 63: 91–109
Google Scholar - Armbruster Th, Oberhdnsli R (1988) Crystal chemistry of double-ring silicates: structures of sugilite und brannockite. Am Mineral 73: 594–600
Google Scholar - Artini E (1915) Due minerali di Baveno contenti terre rare: weibyite e bazzite. Rend Accad Lincei 24: 313–319
Google Scholar - Aurisicchio C, Fioravanti G, Grubessi O, Zanazzi PF (988) Reappraisal of the crystal chemistry of beryl. Am Mineral 73: 826–837
Google Scholar - Bakakin VV, Rylov GM, Belov NV (1970) X-ray diffraction data for identification of beryl isomorphs. Geokhimiya 11: 1302–1311 [English translation in: Geochem Int (1970): 924-933]
Google Scholar - Bergerhoff G, Nowacki W (1955) Ueber die Kristallstruktur des Bazzit und ihre Beziehungen zu der des Beryll. Schweiz Mineral Petrogr Mitt 35: 410–421
Google Scholar - Blak AR, Isotani S, Watanabe S (1982) Optical absorption and electron spin resonance in blue and green beryl. Phys Chem Minerals 8: 161–166
Google Scholar - Bloss FD (1981) The spindle stage: principles and practice. Cambridge University Press, Cambridge London New York New Rochelle Melbourne Sidney, p 340
- Černy P, Hawthorne FC (1976) Refractive indices versus alkali content in beryl: general limitations and applications to some pegmatite types. Can Mineral 14: 491–497
Google Scholar - Chistyakova MB, Movela VA, Rasmanova ZB (1966) The first find of bazzite in the USSR. Dokl Akad Nauk SSSR 169: 1421–1424
Google Scholar - Enraf-Nonius (1983) Structure determination package (SDP). Enraf-Nonius, Delft, The Netherlands
Google Scholar - Frondel C, Ito J (1968) Synthesis of the scandium analogue of beryl. Am Mineral 53:943-953 Goldman DS, Rossman GR, Parkin KM (1978) Channel constituents in beryl. Phys Chem Minerals 3: 225–235
Google Scholar - Gunter ME, Bloss FD, Su SHC (1989) Computer programs for the spindle stage and double variation method. Microscope 37: 167–171
Google Scholar - Hagemann H, Lucken A, Bill H, Gysler-Sanz J, Stalder HA (1990) Polarized Raman spectra of beryl and bazzite. Phys Chem Minerals 17: 395–401
Google Scholar - Hänni HA (1980) Mineralogische und mineralchemische Untersuchungen an Beryll aus alpinen Zerrklüften. Dissertation, Universitat Basel
- Hawthorne FC, Cerny P (1977) The alkali-metal positions in Cs-Li beryl. Can Mineral 15: 414–421
Google Scholar - Herzberg G (1960) Molecular spectra and molecular structure. II, Infrared and Raman spectra of polyatomic molecules. Van Nostrand, Princeton, pp 280-282
- Isetti G (1961) Ricerche sulle relazioni esistenti tra birifrazione, dispersione e pleochroismo di alcuni minerali. Periodico di Mineralogia 30: 139–163
Google Scholar - Morosin B (1972) Structure and thermal expansion of beryl. Acta Crystallogr B28: 1899–1903
Google Scholar - Nowacki W, Phan KD (1964) Composition quantitative de la bazzite de Val Strem (Suisse) determine par la microsonde électronique de Castaigne. Bull Soc Mineral 87: 453
Google Scholar - Peyronel G (1956) The crystal structure of Baveno bazzite. Acta Crystallogr 9: 181
Google Scholar - Pouchou JL, Pichoir F (1984) Un nouveau modèle de calcul pour la microanalyse quantitative par spectrométrie de rayons X. La Recherche Aèrospatiale 3: 167–192
Google Scholar - Sanders IS, Doff DH (1991) A blue sodic beryl from southeast Ireland. Min Mag 55: 167–172
Google Scholar - Sheldrick GM (1976) SHELX76. Program for crystal structure determination. University of Cambridge, England
Google Scholar - Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32: 751–767
Google Scholar - Sherriff BL, Grundy HD, Hartman JS, Hawthorne FC, Cerny P (1991) The incorporation of alkalis in beryl: multi-nuclear MAS NMR and crystal structure-study. Can Mineral 29: 271–285
Google Scholar - Smith G, Dickson BL, Vance ER, Price, DC (1976) Optical and Mössbauer studies of beryl. 24th Intern Geol Congress, Sydney, Section 14, 602 (Abstract)
- Stalder HA (1978) Alte and neue Mineralfunde aus dem Wallis. Schweizer Strahler 4: 374–384
Google Scholar - Strens RG, Freer R (1978) The physical basis of mineral optics. I. Classical theory. Min Mag 42: 19–30
Google Scholar - Su S-C, Bloss FD, Gunter ME (1987) Procedures and computer programs to refine the double-variation method. Am Mineral 72: 1011–1013
Google Scholar - Wenger M, Armbruster Th (1991) Crystal chemistry of lithium: oxygen coordination and bonding. Eur J Mineral 3: 387–399
Google Scholar - Wood DL, Nassau K (1967) Infrared spectra of foreign molecules in beryl. J Chem Phys 47: 2220–2228
Google Scholar
Author information
Authors and Affiliations
- Laboratorium für chemische und mineralogische Kristallographie, Universitat Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
Th. Armbruster - Institut für Mineralogie und Kristallographie, Universitat Wien, Dr.-Karl-Lueger-Ring 1, A-1010, Wien, Austria
E. Libowitzky, M. Auernhammer, P. Bauerhansl, Ch. Hoffmann, E. Irran, A. Kurka & H. Rosenstingl - Mineralogisches Institut, Universitat Bern, Baltzerstrasse 1, CH-3012, Bern, Switzerland
L. Diamond
Authors
- Th. Armbruster
You can also search for this author inPubMed Google Scholar - E. Libowitzky
You can also search for this author inPubMed Google Scholar - M. Auernhammer
You can also search for this author inPubMed Google Scholar - P. Bauerhansl
You can also search for this author inPubMed Google Scholar - Ch. Hoffmann
You can also search for this author inPubMed Google Scholar - E. Irran
You can also search for this author inPubMed Google Scholar - A. Kurka
You can also search for this author inPubMed Google Scholar - H. Rosenstingl
You can also search for this author inPubMed Google Scholar - L. Diamond
You can also search for this author inPubMed Google Scholar
Rights and permissions
About this article
Cite this article
Armbruster, T., Libowitzky, E., Auernhammer, M. et al. Crystal chemistry and optics of bazzite from Furkabasistunnel (Switzerland).Mineralogy and Petrology 52, 113–126 (1995). https://doi.org/10.1007/BF01163130
- Received: 21 June 1993
- Accepted: 19 October 1993
- Issue Date: March 1995
- DOI: https://doi.org/10.1007/BF01163130