Coexistence of peptides with classical neurotransmitters (original) (raw)
Literature
Agid, Y., Javoy, F., and Glowinski, J., Hyperactivity of remaining dopaminergic neurones after partial destruction of the nigro-striatal dopaminergic system in the rat. Nature New Biol.245 (1973) 150–151. CASPubMed Google Scholar
Allen, J.M., Tatemoto, K., Polak, J.M., Hughes, J., and Bloom, S.R., Two novel related peptides, neuropeptide Y (NPY) and peptide YY (PYY) inhibit the contraction of the electrically stimulated mouse vas deferens. Neuropeptides_3_ (1982) 71–77. CASPubMed Google Scholar
Altschuler, R. A., Parakkal, M.H., Fex, J., Localization of enkephalin-like immunoreactivity in acetylcholinesterase-positive cells in the guinea-pig lateral superior olivary complex that project to the cochlea. Neuroscience_9_ (1983) 621–630. CASPubMed Google Scholar
Amara, S.G., Jonas, V., Rosenfeld, M.G., Ong, E.S., and Evans, R.M., Alternative RNA-processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature_298_ (1982) 240–244. CASPubMed Google Scholar
Armstrong, D.M., Miller, R.J., Beaudet, A., and Pickel, V.M., Enkephalin-like immunoreactivity in rat area postrema: Ultrastructural localization and coexistence with serotonin. Brain Res.310 (1984) 269–278 CASPubMed Google Scholar
Bartfai, T., Presynaptic aspects of the coexistence of classical neurotransmitters and peptides. TIPS_8_ (1985) 331–334. Google Scholar
Baumgarten, H.G., Björklund, A., Lachenmayer, L., Nobin, A., and Stenevi, U., Long-lasting selective depletion of brain serotonin by 5,6-dihydroxytryptamine. Acta physiol. scand., Suppl.373 (1971) 1–16. Google Scholar
Beaujouan, J.C., Torrens, Y., Saffroy, M., and Glowinski, J., Quantitative autoradiographic analysis of the distribution of binding sites for (125I) Bolton Hunter derivatives of eledoisin and substance P in the rat brain. Neuroscience_18_ (1984) 857–875. Google Scholar
Belin, M.F., Weisman-Nanopoulos, D., Steinbusch, H., Verhofstad, A., Maitre, M., Jouvet, M., and Pujol, J.F., Mise en évidence de glutamate décarboxylase et de sérotonine dans un měme neurone au niveau du noyau raphé dorsalis du rat par des méthodes de double marquage immunocytochinique. C.r. Acad. Sci.293 (1981) 337–341. CAS Google Scholar
Belin, M.F., Nanopoulos, D., Didier, M., Aguera, M., Steinbusch, H., Verhofstad, A., Maitre, M., and Pujol, J.F., Immunohistochemical evidence for the presence of γ-aminobutyric acid and serotonin in one nerve cell. A study on the raphe nuclei of the rat using antibodies to glutamate decarboxylase and serotonin. Brain Res.275 (1983) 329–339. CASPubMed Google Scholar
Berod, A., Chat, M., Paut, L., and Tappaz, M., Catecholaminergic and GABAergic anatomical relationship in the rat substantia nigra, locus coeruleus, and hypothalamic median eminence: Immunocytochemical visualization of biosynthetic enzymes on serial semithin plastic-embedded sections. J. Histochem. Cytochem.32 (1984) 1331–1338. CASPubMed Google Scholar
Berkenboesch, F., Linton, E.A., and Tilders, F.J.H., Colocalization of PHI- and CRF-immunoreactivity in neurons of the rat hypothalamus: a surprising artefact. Neuroendocrinology_44_ (1986) 338–346. Google Scholar
Björklund, A., and Hökfelt, T., Eds, Handbook of Chemical Neuroanatomy, vol. 4; GABA and Neuropeptides in the CNS, Part I. Elsevier, Amsterdam 1985. Google Scholar
Blessing, W.W., Howe, P.R.C., Joh, T.H., Oliver, J.R., and Willoughby, J.O., Distribution of tyrosine hydroxylase and neuropeptide Y-like immunoreactive neurons in rabbit medulla oblongata, with attention to colocalization studies, presumptive adrenaline-synthesizing perikarya, and vagal preganglionic cells. J. comp. Neurol.248 (1986) 285–300. CASPubMed Google Scholar
Branton, W.D., Phillips, H.S., and Jan, Y.N., The LHRH family of peptide messengers in the frog nervous system. in: Progress in Brain Research, pp. 205–215. Eds T. Höpkfelt, K. Fuxe and B. Pernow, Elsevier, Amsterdam 1986. Google Scholar
Brashear, H.R., Záborszky, L., and Heimer, L., Distribution of GABAergic and cholinergic neurons in the rat diagnonal band. Neuroscience_17_ (1986) 439–445. CASPubMed Google Scholar
Browstein, M.J., Saavedra, J.M., Axelrod, J., and Carpenter, D.O., Coexistence of several putative neurotransmitters in single identified neurons of aplysia. Proc. natn. Acad. Sci. USA_71_ (1974) 4662–4665. Google Scholar
Buchanan, J.T., Brodin, L., Hökfelt, T., and Grillner, S., Survey of neuropeptide-like immunoreactivity in the lamprey spinal cord. Brain Res., in press.
Burnstock, G., Do some nerve cells release more than one transmitter? Neuroscience_1_ (1976) 239–248. CASPubMed Google Scholar
Caffé, A.R., and van Leeuwen, F.W., Vasopressin-immunoreactive cells in the dorsomedial hypothalamic region, medial amygdaloid nucleus and locus coeruleus of the rat. Cell Tissue Res.233 (1983) 23–33. PubMed Google Scholar
Chan-Palay, V., Combined immunocytochemistry and autoradiography after in vivo injection of monodonal antibody to substance P and3H-serotonin: Coexistence of two putative transmitters in single raphe cells and fiber plexuses. Anat. Embryol.156 (1979) 241–254. CAS Google Scholar
Chan-Palay, V., and Palay, S.L., Eds, Coexistence of Neuroactive Substances in Neurons. John Wiley & Sons, New York 1984. Google Scholar
Chan-Palay, V., Jonsson, G., and Palay, S.L., Serotonin and substance P coexist in neurons of the rat's central nervous system. Proc. natn. Acad. Sci. USA_75_ (1978) 1582–1586. CAS Google Scholar
Chan-Palay, V., Nilaver, G., Palay, S.L., Beinfeld, M.C., Zimmerman, E.A., Wu, J.-Y., and O'Donohue, T.L., Chemical heterogeneity in cerebellar Purkinje cells: evidence and coexistence of glutamic acid decarboxylase-like and motilin-like immunoreactivities. Proc. natn. Acad. Sci. USA_78_ (1981) 7787–7791. CAS Google Scholar
Charmay, Y., Léger, L., Dray, F., Bérod, A., Jouvet, M., Pujol, J.F., and Dubois, P.M., Evidence for the presence of enkephalin in catecholaminergic neurons of cat locus coeruleus. Neurosci. Lett.30 (1982) 147–151. Google Scholar
Chubb, I.W., Goodman, S., and Smith, A.D., Is acetylcholinesterase secreted from central neurons into the cerebrospinal fluids? Neuroscience_1_ (1976) 57–62. CASPubMed Google Scholar
Chubb, I.E., Hodgson, A.J., and White, G.H., Acetylcholinesterase hydrolyzes substance P. Neuroscience_5_ (1980) 2065–2072. CASPubMed Google Scholar
Coons, A.H., Fluorescent antibody methods, in: General Cytochemical Methods, pp. 399–422. Ed. J.F. Danielli, Academic Press, New York 1958. Google Scholar
Costa, M., and Furness, J.B., Somatostatin is present in subpopulation of noradrenergic nerve fibres supplying the intestine. Neuroscience_13_ (1984) 911–919. CASPubMed Google Scholar
Costa, M., Furness, J.B., and Gibbins, I.L., Chemical coding of enteric neurons, in: Progress in Brain Research, vol. 68, pp. 217–239. Eds T. Hökfelt, K. Fuxe and B. Pernow. Elsevier, Amsterdam 1986. Google Scholar
Cuello, A.C., Ed., Co-transmission. MacMillan, London and Basingtoke 1982. Google Scholar
Cuello, A.C., Ed., Immunohistochemistry; IBRO Handbook Series: Methods in the Neurosciences, vol. 3. John Wiley & Sons, Chichester 1983. Google Scholar
Cuello, A.C., and Kanazawa, I., The distribution of substance P immunoreactive fibers in the rat central nervous system. J. comp. Neurol.178 (1978) 129–156. CASPubMed Google Scholar
Dahlström, A., Effects of vinblastine and colchicine on monoamine containing neurons of the rat with special regard to the axoplasmic transport of amine granules. Acta neuropath. Suppl.5 (1971) 226–237. Google Scholar
Dahlström, A., and Fuxe, K., Evidence of the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiol. scand.62, Suppl. 232 (1964) 1–55. Google Scholar
Dalsgaard, C.-J., Hökfelt, T., Elfvin, L.-G., Skirboll, L., and Emson, P., Substance P-containing primary sensory neurons projecting to the inferior mesenteric ganglion: Evidence from combined retrograde tracing and immunohistochemistry. Neuroscience_7_ (1982) 647–654. CASPubMed Google Scholar
Dalsgaard, C.-J., Hökfelt, T., Schultzberg, M., Lundberg, J.M., Terenius, L., Dockray, G.J., and Goldstein, M., Origin of peptide-containing fibers in the inferior mesenteric ganglion of the guinea pig: Immunohistochemical studies with antisera to substance P, enkephalin, vasoactive intestinal polypeptide, cholecystokinin and bombesin. Neuroscience_9_ (1983) 191–211. CASPubMed Google Scholar
Doerr-Schott, J., Multiple immunocytochemical labelling methods for the simutaneous ultrastructural localization of various hypophysial hormones, in: Pars Distalis of the Pituitary Gland-Structure, Function and Regulation. Excerpta Medica Int. Congr. Ser. 673, pp. 95–106. Eds F. Yoshimura and A. Gorbman Elsevier Science Publ., Amsterdam 1986. Google Scholar
Eckenstein, F., and Baughman, R.W., Two types of cholinergic innervation in cortex, one co-localized with vasoactive intestinal polypeptide. Nature_309_ (1984) 153–155. CASPubMed Google Scholar
Edwards A.V., Järhult, J., Andersson, P.-O., and Bloom, S.R., The importance of the pattern of stimulation in relation to the response of autonomic effectors, in: Systemic Role of Regulatory Peptides, pp. 145–148. Eds S.R. Bloom, J.M. Polak and E. Lindenlaub. Schattauer, Stuttgart 1982. Google Scholar
Everitt, B.J., Hökfelt, T., Terenius, L., Tatemoto, K., Mutt, V., and Goldstein, M., Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system to the rat. Neuroscience_11_ (1984) 443–462. CASPubMed Google Scholar
Everitt, J.E., Hökfelt, T., Wu, J.-Y., and Goldstein, M., Coexistence of tyrosine hydroxylase-like and gamma-aminobutyric acid-like immunoreactivities in neurons of the arcuate nucleus. Neuroendocrinology_39_ (1984) 189–191. CASPubMed Google Scholar
Everitt, B.J., Meister, B., Hökfelt, T., Melander, T., Terenius, L., Rökaeus, Å., Theodorsson-Norheim, E., Dockray, G., Edwardson, J., Cuello, C., Elde, R., Goldstein, M., Hemmings, H., Ouimet, C., Walaas, I., Greengard, P., Vale, W., Weber, E., Wu, J.-Y., and Chang, K.-J., The hypothalamic arcuate nucleus-median eminence DARPP-32 with special reference to coexistence in dopamine neurons. Brain Res. Rev.11 (1986) 97–155. CAS Google Scholar
Fibiger, H.C., The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res. Rev.4 (1982) 327–388. Google Scholar
Fontaine, B., Klarsfeld, A., Hökfelt, T., and Changeux, J.-P., Calcitonin gene-related peptide, a peptide in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes. Neurosci. Lett.71 (1986) 59–65. CASPubMed Google Scholar
Fried, G., Terenius, L., Hökfelt, T., and Goldstein, M., Evidence for the differential localization of noradrenaline and neuropeptide Y (NPY) in neuronal storage vesicles isolated from rat vas deferens. J. Neurosci.5 (1985) 450–458. CASPubMedPubMed Central Google Scholar
Furness, J.B., Costa, M., Emson, P.C., Håkanson, R., Moghimzadeh, E., Sundler, F., Taylor, J.L., and Chance, R.C., Distribution, pathways and reactions to drug treatment of nerves with neuropeptide Y- and pancreatic polypeptidelike immunoreactivity in the guinea pig digestive tract. Cell Tissue Res.234 (1983) 71–92. CASPubMed Google Scholar
Gall, C., Henry, S.H.C., Seroogy, K.B., and Jones, E.G., Colocalization of GABA- and tyrosine hydroxylase-like immunoreactivities in neurons of the rat main olfactory bulb. Soc. Neurosci. Abstr.15 (1985) 89. Google Scholar
Gibson, S.J., Polak, J.M., Bloom, S.r., Sabate, I.M., Mulderry, P.M., Ghatei, M.A., McGregor, G.P., Morrison, J.F.B., Kelly, J.S., Evans, R.M., and Rosenfeld, M.G., Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and of eight other species. J. Neurosci.4 (1984) 3101–3111. CASPubMedPubMed Central Google Scholar
Gilbert, R.F.T., Emson, P.C., Hunt, S.P., Bennett, G.W., Marsden, C.A., Sandberg, B.E.B., Steinbusch, H., and Verhofstad, A.A.J., The effects of monoamine neurotoxins on peptides in the rat spinal cord. Neuroscience_7_ (1982) 69–88. CASPubMed Google Scholar
Glazer, E.J., Steinbusch, H., Verhofstad, A., and Basbaum, A.I., Serotonin neurons in nucleus raphe dorsalis and paragigantocellularis of the cat contain enkaphalin, J. Physiol., Paris_77_ (1981) 241–245. CASPubMed Google Scholar
Greenfield, S.A., The significance of dendritic release of transmitter and protein in the substantia nigra. Neurochem. int.7 (1985) 887–901. CASPubMed Google Scholar
Greenfield, S.A., Cheramy, A., Leviel, V., and Glowinski, J., In vivo release of acetylcholinesterase in the cat substantiae nigrae and caudate nuclei. Nature_284_(1980) 355–357. CASPubMed Google Scholar
Hendry, S.H.C., Jones, E.G., DeFelipe, J., Schmechel, D., Brandon, C., and Emson, P.C., Neuropeptide-containing neurons of the cerebral cortex are also GABAergic. Proc. natn. Acad. Sci. USA_81_ (1984) 6526–6530. CAS Google Scholar
Hökfelt, T., Elfvin, L.-G., Elde, R., Schultzberg, M., Goldstein, M., and Luft, R., Occurrence of somatostatin-like immunoreactivity in some peripheral sympathetic noradrenergic neurons. Proc. natn. Acad. Sci. USA_74_ (1977) 3587–3591. Google Scholar
Hökfelt, T., Ljungdahl, Å., Steinbusch, H., Verhofstad, A., Nilsson, G., Brodin, E., Pernow, B., and Goldstein, M., Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxytryptamine-containing neurons in the rat central nervous system. Neuroscience_3_ (1978) 517–538. PubMed Google Scholar
Hökfelt, T., Johansson, O., Ljungdahl, Å., Lundberg, J.M., and Schultzberg, M., Peptidergic neurons. Nature_284_ (1980) 515–521. PubMed Google Scholar
Hökfelt, T., Lundberg, J.M., Schultzberg, M., Johansson, O., Ljungdahl, Å., and Rehfeld, J., Coexistence of peptides and putative transmitters in neurons, in: Neural Peptides and Neuronal Communication, pp. 1–23. Eds E. Costa and M. Trabucchi. Raven Press, New York 1980. Google Scholar
Hökfelt, T., Rehfeld, J.F., Skirboll, L., Ivemark, B., Goldstein, M., and Markey, K., Evidence for coexistence of dopamine and CCK in mesolimbic neurones. Nature_285_ (1980) 476–478. PubMed Google Scholar
Hökfelt, T., Skirboll, L., Rehfeld, J.F., Goldstein, M., Markey, K., and Dann, O., A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: evidence from immunohistochemistry combined with retrograde tracing. Neuroscience_5_ (1980) 2093–2124. PubMed Google Scholar
Hökfelt, T., Everitt, B.J., Theodorsson-Norheim, E., and Goldstein, M., Occurrence of neurotensinlike immunoreactivity in subpopulations of hypothalamic, mesencephalic, and medullary catecholamine neurons. J. comp. Neurol.222 (1984) 543–559. PubMed Google Scholar
Hökfelt, T., Lundberg, J.M., Lagercrantz, H., Tatemoto, K., Mutt, V., Lundberg, J.M., Terenius, L., Everitt, B.J., Fuxe, K., Agnati, L.F., and Goldstein, M., Occurrence of neuropeptide Y (NPY)-like immunoreactivity in catecholamine neurons in the human medulla oblongata. Neurosci. Lett.36 (1983) 217–222. PubMed Google Scholar
Hökfelt, T., Johansson, O., and Goldstein, M., Central catecholamine neurons as revealed by immunohistochemistry with special reference to adrenaline neurons, in: Handbook of Chemical Neuroanatomy, vol. 2: Classical Transmitters in the CNS, Part I, pp. 157–276. Eds A. Björklund and T. Hökfelt. Elsevier, Amsterdam 1984. Google Scholar
Hökfelt, T., Johansson, O., and Goldstein, M., Chemical anatomy of the brain. Science_225_ (1984) 1326–1334. PubMed Google Scholar
Hökfelt, T., Mårtensson, R., Björklund, A., Kleinau, S., and Goldstein, M., Distributional maps of tyrosine hydroxylase immunoreactive neurons in the rat brain, in: Handbook of Chemical Neuroanatomy, vol. 2: Classical Transmitters in the CNS, Part I, pp. 277–379. Eds A. Björklund and T. Hökfelt. Elsevier, Amsterdam 1984. Google Scholar
Hökfelt, T., Skirboll, L., Everitt, B.J., Meister, B., Brownstein, M., Jacobs, T., Faden, A., Kuga, S., Goldstein, M., Markstein, R., Dockray, G., and Rehfeld, J., Distribution of cholecystokinin-like immunoreactivity in the nervous system with special reference to coexistence with classical neurotransmitters and other neuropeptides, in: Neuronal Cholecystokinin, pp. 255–274. Eds J.J. Vanderhaeghen and J. Crawley. Ann. N.Y. Acad. Sci. New York 1985. Google Scholar
Hökfelt, T., Fuxe, K., and Pernow, B., Eds, Coexistence of neuronal messengers: a new principle in chemical transmission, in: Progress in Brain Research, vol. 68. Elsevier, Amsterdam 1986. Google Scholar
Hökfelt, T., Holets, V.R., Staines, W., Meister, B., Melander, T., Schalling, M., Schutzberg, M., Freedman, J., Björklund, H., Olson, L., Lindh, B., Elfvin, L.-G., Lundberg, J.M., Lindgren, J.Å., Samuelsson, B., Pernow, B., Terenius, L., Post, C., Everitt, B., and Goldstein, M., Coexistence of neuronal messengers — an overview, in: Progress in Brain Research, vol. 68, pp. 33–70. Eds T. Hökfelt, K. Fuxe and B. Pernow, Elsevier, Amsterdam 1986. Google Scholar
Hökfelt, T., and Terenius, L., More on receptor mismatch. TINS_10_ (1987) 22. Google Scholar
Hunt, S.P., and Lovick, T.A., The distribution of serotonin, metenkephalin and β-lipotropin-like immunoreactivity in neuronal perikarya of the cat brain stem. Neurosci. Lett.30 (1982) 139–145. CASPubMed Google Scholar
Hylden, J.L.K., and Wilcox, G.L., Intrathecal substance P elicits caudally-directed biting and scratching behavior in mice. Brain Res.217 (1981) 212–215. CASPubMed Google Scholar
Ibata, Y., Fukui, K., Okamura, H., Kawakami, T., Tanaka, M., Obata, H.L., Isuto, T., Terubayashi, H., Yanaihara, C., and Yanaihara, N., Coexistence of dopamine and neurotensin in the hypothalamic arcuate and periventricular nucleus. Brain Res.269 (1983) 177–179. CASPubMed Google Scholar
Jacobowitz, D.M., and Palkovits, M., Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. I. Forebrain (Telencephalon, Diencephalon). J. comp. Neurol.157 (1974) 13–28. CASPubMed Google Scholar
Jirikowski, G., Reisert, I., Pilgrim, Ch., and Oertel, W.H., Coexistence of glutamate decarboxylase and somatostatin immunoreactivity in cultured hippocampal neurons of the rat. Neurosci. Lett.46 (1984) 35–39. CASPubMed Google Scholar
Johansson, O., Hökfelt, T., Pernow, B., Jeffcoate, S.L., White, N., Steinbusch, H.W.M., Verhofstad, A.A.J., Emson, P.C., and Spindel, E., Immunohistochemical support for three putative transmitters in one neuron: coexistence of 5-hydroxytryptamine-, substance P-, and thyrotropin releasing hormone-like immunoreactivity in medullary neurons projecting to the spinal cord. Neuroscience_6_ (1981) 1857–1881. CASPubMed Google Scholar
Ju, G., Hökfelt, T., Fischer, J.A., Frey, P., Rehfeld, J.F., and Dockray, G.J., Does cholecystokinin-like immunoreactivity in rat primary sensory neurons represent calcitonin gene related peptide? Neurosci. Lett.68 (1986) 305–310. CASPubMed Google Scholar
Köhler, C., Swanson, L.W., Haglund, L., and Wu, J.-Y., The cytoarchitecture, histochemistry and projections of the tuberomammillary nucleus in the rat. Neuroscience_16_ (1985) 85–110. PubMed Google Scholar
Kondo, H., Kuramoto, H., Wainer, B.H., and Yanaihara, N., Evidence for the coexistence of acetylcholine and enkephalin in the sympathetic preganglionic neurons of rats. Brain Res.335 (1985) 309–314. CASPubMed Google Scholar
Kosaka, T., Hataguchi, Y., Hama, K., Nagatsu, I., and Wu, J.-Y., Coexistence of immunoreactivities for glutamate decarboxylase and tyrosine hydroxylase in some neurons in the periglomerular region of the rat main olfactory bulb: possible coexistence of gamma-aminobutyric acid (GABA) and dopamine. Brain Res.343 (1985) 166–171. CASPubMed Google Scholar
Kosaka, T., Kosaka, K., Tateishi, K., Hamaoka, Y., Yanaihara, N., Wu, J.-Y., and Hama, K., GABAergic neurons containing CCK-8-like and/or VIP-like immunoreactivities in the rat hippocampus and dentate gyrus. J. comp. Neurol.239 (1985) 420–430. CASPubMed Google Scholar
Krieger, D.T., Brownstein, M.J., and Martin, J.B., Eds, Brain Peptides. John Wiley & Sons, New York 1983. Google Scholar
Léger, L., Charnay, Y., Chayvialle, J.A., Bérod, A., Dray, F., Pujol, J.F., Jouvet, M., and Dubois, P.M., Localization of substance P-and enkephalin-like immunoreactivity in relation to catecholamine-containing cell bodies in the cat dorsolateral pontine tegmentum: an immunofluorescence study. Neuroscience_8_ (1983) 525–546. PubMed Google Scholar
Le Grevés, P., Nyberg, F., Terenius, L., and Hökfelt, T., Calcitonin gene-related peptide is a potent inhibitor of substance P degradation. Eur. J. Pharmac.115 (1986) 309–311. Google Scholar
Lindh, B., Hökfelt, t., Elfvin, G., Terenius, L., Fahrenkrug, J., Elde, R., and Goldstein, M., Topography of NPY-, somatostatin-, and VIP-immunoreactive, neuronal subpopulations in the guinea pig celiac-superior mesenteric ganglion and their projection to the pylorus. J. Neurosci.6 (1986) 2371–2383. CASPubMedPubMed Central Google Scholar
Ljungdahl, Å, Hökfelt, T., and Nilsson, G., Distribution of substance P-like immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals. Neuroscience_3_ (1978) 861–943. CASPubMed Google Scholar
Lorenz, R.G., Saper, C.B., Wong, D.L., Ciaranello, R.D., and Loewy, A.D., Co-localization of substance P- and phenylethanolamine-N-methyltransferase-like immunoreactivity in neurons of ventrolateral medulla that project to the spinal cord: Potential role in control of vasomotor tone. Neurosci. Lett.55 (1985) 255–260. CASPubMed Google Scholar
Lovick, T.A., and Hunt, S.P., Substance P-immunoreactive and serotonin-containing neurones in the ventral brainstem of the cat, Neurosci. Lett.36 (1983) 223–228. CASPubMed Google Scholar
Lundberg, J.M., and Hökfelt, T., Coexistence of peptides and classical neurotransmitters. TINS_6_ (1983) 325–333. CAS Google Scholar
Lundberg, J.M., and Hökfelt, T., Multiple co-existence of peptides and classical transmitters in peripheral autonomic and sensory neurons-functional and pharmacological implications, in: Progress in Brain Research, vol. 68, pp. 241–262. Eds T. Hökfelt, K. Fuxe and B. Pernow. Elsevier, Amsterdam 1986. Google Scholar
Lundberg, J.M., and Tatemoto, K., Pancreactic polypeptide family (APP, BPP, NPY and PYY) in relation to sympathetic vasoconstriction resistant to α-adrenoceptor blockade. Acta physiol. scand.116 (1982) 393–402. CASPubMed Google Scholar
Lundberg, J.M., Fried, G., Fahrenkrug, J., Holmstedt, B., Hökfelt, T., Lagercrantz, H., Lundgren, G., and Änggård, A., Subcellular fractionation of cat submandibular gland: comparative studies on the distribution of acetylcholine and vasoactive intestinal polypeptide (VIP). Neuroscience_6_ (1981) 1001–1010. CASPubMed Google Scholar
Lundberg, J.M., Hedlund, B., Änggård, A., Fahrenkrug, J., Hökfelt, T., Tatemoto, K., and Bartfai, T., Co-storage of peptides and classical transmitters in neurons, in: Systemic Role of Regulatory Peptides, pp. 93–119. Eds S.R. Bloom, J.M. Polak and E. Lindenlaub. Schattauer, Stuttgart and New York 1982. Google Scholar
Lundberg, J.M., Hökfelt, T., Änggård, A., Terenius, L., Elde, R., Markey, K., Goldstein, M., and Kimmel, J., Organizational principles in the peripheral sympathetic nervous system: subdivision by coexisting peptides (somatostatin-, avian pancreatic polypeptide-, and vasoactive intestinal polypeptide-like immunoreactive materials). Proc. natn. Acad. Sci. USA_79_ (1982) 1303–1307. CAS Google Scholar
Lundberg, J.M., Terenius, L., Hökfelt, T., Martling, C.R., Tatemoto, K., Mutt, V., Polak, J., Bloom, S., and Goldstein, M., Neuropeptide Y (NPY)-like immunoreactivity in peripheral noradrenergic neurons and effects of NPY on sympathetic function. Acta physiol. scand.116 (1982) 477–480. CASPubMed Google Scholar
Macrae, I.M., Furness, J.B., and Costa, M., Distribution of sub-groups of noradrenaline neurons in the coeliac ganglion of the guinea-pig. Cell Tissue Res.244 (1986) 173–180. CASPubMed Google Scholar
Mantyh, P.W., and Hunt, S.P., Evidence for cholecystokininlike immunoreactive neurons in the rat medulla oblongata which project to the spinal cord. Brain Res.291 (1984) 49–54. CASPubMed Google Scholar
Mason, R.T., Peterfreund, R.A., Sawchenko, P.E., Corrigan, A.Z., Rivier, J.E., and Vale, W.W., Release of the predicted calcitonin gene-related peptide from cultured rat trigeminal ganglion cells. Nature_308_ (1984) 653–655. CASPubMed Google Scholar
Matthews, M.R., and Cuello, A.C., Substance P-immunoreactive peripheral branches of sensory neurones innervate guinea-pig sympathetic neurons. Proc. natn. Acad. Sci. USA_79_ (1982) 1668–1672. CAS Google Scholar
Matthysse, S.W., and Kety, S.S., Eds, Catecholamines and Schizophrenia. Pergamon Press, Oxford 1975. Google Scholar
Meister, B., Hökfelt, T., Vale, W.W., and Goldstein, M., Growth hormone releasing factor (GRF) and dopamine coexist in hypothalamic arcuate neurons. Acta physiol. scand.124 (1985) 133–136. CASPubMed Google Scholar
Meister, B., Hökfelt, T., Vale, W.W., Sawchenko, P.E., Swanson, L., and Goldstein, M., Coexistence of dopamine and growth hormone releasing factor (GRF) in a subpopulation of tubero-infundibular neurons of the rat. Neuroendocrinology_42_ (1986) 237–247. CASPubMed Google Scholar
Meister, B., Hökfelt, T., Brown, J., Joh, T., and Goldstein, M., Dopaminergic cells in the caudal A13 cell group express somatostatin-like immunoreactivity. Exp. Brain Res., 1987, in press.
Melander, T., Staines, W.A., Hökfelt, T., Rökaeus, Å., Eckenstein, F., Salvaterra, P.M., and Wainer, B.H., Galanin-like immuno-reactivity in cholinergic neurons of the septum-basal forebrain complex projecting to the hippocampus of the rat. Brain Res.360 (1985) 130–138. CASPubMed Google Scholar
Melander, T., and Staines, W.A., A galanin-like peptide coexists in putative cholinergic somata of the septum-basal forebrain complex and in acetylcholinesterase-containing fibers and varicosities within the hippocampus in the owl monkey (Aotus trivirgatus). Neurosci. Lett.68 (1986) 17–22. CASPubMed Google Scholar
Melander, T., Hökfelt, T., Rökaeus, Å., Cuello, A.C., Oertel, W.H., Verhofstad, A., and Goldstein, M., Coexistence of galanin-like immunoreactivity with catecholamines, 5-hydroxytryptamine, GABA and neuropeptides in the rat CNS. J. Neurosci.6 (1987) 3640–3654. Google Scholar
Millhorn, D.E., Hökfelt, T., Seroogy, K., Oertel, W., Verhofstad, A., and Wu, J.-Y., Immunohistochemical evidence for colocalization of gamma-aminobutyric acid (GABA) and serotonin in neurons of the ventral medulla oblongata projecting to the spinal cord. Brain Res. (1987) in press.
Millhorn, D., Hökfelt, T., Terenius, L., Buchan, A., and Brown, J.C., Somatostatin- and enkephalin-like immunoreactivities are frequently colocalized in neurons in the caudal brain stem of the rat. Exp. Brain. Res., 1987, in press.
Mishkin, M., A memory system in the monkey. Phil. Trans. R. Soc. Lond. Biol. Ser.B 298 (1982) 85–95. Google Scholar
Nairn, R.C., Ed. Fluorescent Protein Tracing, 3rd edition. E. & S. Livingstone Ltd., Edinburgh and London 1969. Google Scholar
Nakane, P.K., Simultaneous localization of multiple tissue antigens using the peroxidase-labeled antibody method: a study in pituitary glands of the rat. J. Histochem. Cytochem.16 (1968) 557–560. CASPubMed Google Scholar
New H.V., and Mudge, A.W., Calcitonin gene-related peptide regulates muscle acetylcholine receptor synthesis. Nature_323_ (1986) 809–811. CASPubMed Google Scholar
Nilsson, J., von Euler, A.M., and Dalsgaard, C.-J., Stimulation of connective tissue cell growth by substance P and substance K. Nature_315_ (1985) 61–63. CASPubMed Google Scholar
Nordström, Ö. Melander, T., Hökfelt, T., Bartfai T., and Goldstein, M., Evidence for an inhibitory effect of the peptide galanin on dopamine release from the rat median eminence. Neurosci. Lett.73 (1987) 21–26. PubMed Google Scholar
O'Donohue, T.L., Millington, W.R., Handelmann, G.E., Contreras, P.C., and Chronwall, B.M., On the 50th anniversary of Dale's law: Multiple neurotransmitter neurons. TIPS_6_ (1985) 305–308. CAS Google Scholar
Oertel, W.H., and Mugnaini, E., Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relations to other neuronal systems. Neurosci. Lett.47 (1984) 233–238. CASPubMed Google Scholar
Oertel, W.H., Graybiel, A.M., Mugnaini, E., Elde, R.P., Schmechel, D.E., and Kopin, E.J., Coexistence of glutamic acid decarboxylase-and somatostatin-like immunoreactivity in neurons of the feline nucleus reticularis thalami. J. Neurosci.3 (1983) 1322–1332. CASPubMedPubMed Central Google Scholar
Okamura, H., Murakami, S., Chihara, K., Nagatsu, I., and Ibata, Y., Coexistence of growth hormone releasing factor-like and tyrosine hydroxylase-like immunoreactivities in neurons of the rat arcuate nucleus. Neuroendocrinology_41_ (1985) 177–179. CASPubMed Google Scholar
Osborne, N.N., Is Dale's principle valid? TINS_2_ (1979) 73–75. Google Scholar
Osborne, N.N., Ed., Dale's Principle, and Communication between Neurones. Pergamon Press, Oxford and New York 1983. Google Scholar
Osborne, N.N., and Beaton, D.W., Direct histochemical localisation of 5,7-dihydroxytryptamine and the uptake of serotonin by a subpopulation of GABA neurones in the rabbit retina. Brain Res.382 (1986) 158–162. CASPubMed Google Scholar
Otsuka, M., and Takahashi, T., Putative peptide neurotransmitters. A. Rev. Pharmac. Toxic.17 (1977) 425–439. CAS Google Scholar
Otsuka, M., Konishi, S., Yanagisawa, M., Tsunoo, A., and Akagi, H., Role of substance P as a sensory transmitter in spinal cord and sympathetic ganglia, in: Substance P in the Nervous System, pp. 13–34. Ciba Foundation Symposium 91. Pitman, London 1982. Google Scholar
Ottersen, O.P., Storm-Mathisen, J., Laake, J.H., and Madsen, S., Distribution of possible amino acid transmitters and some cellular markers in the cerebellum. Neurosci. Lett. Suppl.26, (1986) 399. Google Scholar
Owman, Ch., Håkanson, R., and Sundler, F., Occurrence and function of amines in polypeptides hormones producing cells. Fedn Proc. Fedn. Am. Soc. exp. Biol.32 (1973) 1785–1791. CAS Google Scholar
Palkovits, M., and Jacobowitz, D.M., Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. II. Hindbrain (Mesencephalon, Rhombencephalon). J. comp. Neurol.157 (1974) 29–41. CASPubMed Google Scholar
Palkovits, M., and Brownstein, M.J., Distribution of neuropeptides in the central nervous system using biochemical micromethods, in: Handbook of Chemical Neuroanatomy, vol. 4: GABA and Neuropeptides in the CNS, Part 1, pp 1–71. Eds A. Björklund and T. Hökfelt. Elsevier, Amsterdam 1985. Google Scholar
Pelletier, G., Steinbusch, H.W., and Verhofstad, A., Immunoreactive substance P and serotonin present in the same dense core vesicles. Nature_293_ (1981) 71–72. CASPubMed Google Scholar
Pearse, A.G.E., The cytochemistry and ultrastructure of polypeptide hormone producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J. Histochem. Cytochem.17 (1969), 303–313. CASPubMed Google Scholar
Pernow, B., Substance P., Pharmac. Rev.35 (1983) 85–141. CAS Google Scholar
Piercey, M.F., Dobry, P.J.K., Schroeder, L.A., and Einspahr, F.J., Behavioral evidence that substance P may be a spinal cord sensory neurotransmitter Brain Res.210 (1981) 407–412. CASPubMed Google Scholar
Polak, J.M., and Van Noorden, S., Ed., Immunocytochemistry. Practical Applications in Pathology and Biology. Wright — PSG, Bristol 1983. Google Scholar
Rosenfeld, M.G., Mermod, J.-J., Amara, S.G., Swanson, L.W., Sawchenko, P.E., Rivier, J., Vale, W.W., and Evans, R.M., Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature_304_ (1983) 129–135. CASPubMed Google Scholar
Rothman, R.B., Herkenham, M., Pert, C.B., Liang, T., and Cascieri, M.A., Visualization of rat brain receptors for the neuropeptide, substance P. Brain Res.309 (1984) 47–54. CASPubMed Google Scholar
Saria, A., Gamse, R., Petermann, J., Fischer, J.A., Theodorsson-Norheim, E., and Lundberg, J.M., Simultaneous release of several tachykinins and calcitonin gene-related peptide from rat spinal cord slices. Neurosci. Lett.63 (1986) 310–314. CASPubMed Google Scholar
Sawchenko, P.E., Swanson, L.W., Grzanna, R., Howe, P.R.C., Polak, J.M., and Bloom, S.R., Co-localization of neuropeptide-Y immunoreactivity in brainstem catecholaminergic neurons that project to the paraventricular nucleus of the hypothalamus. J. comp. Neurol.241 (1985) 138–153. CASPubMed Google Scholar
Schmechel, D.E., Vickrey, B.G., Fitzpatrick, D., Elde, R.P., GABAergic neurons of mammalian cerebral cortex: widespread subclass defined by somatostatin content. Neurosci. Lett.47 (1984) 227–232. CASPubMed Google Scholar
Shults, C.W., Quirion, R., Chronwall, B., Chase, T.N., and O'Donohue, T., A comparison of the anatomical distribution of substance P and substance P receptors in the rat central nervous system. Peptides_5_ (1984) 1097–1128. CASPubMed Google Scholar
Senba, E., Daddona, P.E., Watanabe, T., Wu, J.-Y., and Nagy, J.I., Coexistence of adenosine deaminase, histidine decarboxylase, and glutamate decarboxylase in hypothalamic neurons of the rat. J. Neurosci.5 (1985) 3393–3402. CASPubMedPubMed Central Google Scholar
Smith, A.D., Dale's principle today: Adrenergic tissues, in: Neuron Concept Today. Eds, J. Szentágothai, J. Hámori and E.S. Vizi. Symposium, Tihany, Akadémiai Kiado, Budapest 1976. Google Scholar
Snyder, S., Brain peptides as neurotransmitters. Science_209_ (1980) 976–983. CASPubMed Google Scholar
Sofroniew, M.V., Pearson, R.C.A., Eckenstein, F., Cuello, A.C., and Powell, T.P.S., Retrograde changes in cholinergic neurons in the basal forebrain of the rat following cortical damage. Brain Res.289 (1983) 370–374. CASPubMed Google Scholar
Somogyi, P., Hodgson, A.J., Smith, A.D., Nunzi, M.G., Gorio, A., and Wu, J.-Y., Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin-or cholecystokinin-immunoreactive material. J. Neurosci.4 (1984) 2590–2603. CASPubMedPubMed Central Google Scholar
Staines, W.A., Meister, B., Melander, T., Nagy, J.I., and Hökfelt, T., Three-colour immunohistofluorescence allowing triple labelling within a single section. J. Histochem. Cytochem., 1987, in press.
Sternberger, L.A., Ed., Immunocytochemistry, 2nd edition John Wiley & Sons, New York 1979. Google Scholar
Stjärne, L., and Lundberg, J.M., Neuropeptide Y (NPY) depresses the secretion of3H-noradrenaline and the contractile response evoked by field stimulation in rat vas deferens. Acta physiol. scand.120 (1984) 477–479. PubMed Google Scholar
Takami, K., Kawai, Y., Shiosaka, S., Lee, Y., Girgis, S., Hillyard, C.J., MacIntyre, I., Emson, P.C., and Tohyama, M., Immunohistochemical evidence for the coexistence of calcitonin gene-related peptide-and choline acetyltransferase-like immunoreactivity in neurons of the rat hypoglossal, facial and ambiguous nuclei. Brain Res.328 (1985) 386–389. CASPubMed Google Scholar
Takami, K., Kawai, Y., Uchida, S., Tohyama, M., Shiotani, Y., Yoshida, H., Emson, P.C., Girgis, S., Hillyard, C.J., and MacIntyre, J., Effect of calcitonin gene-related peptide on contraction of striated muscle in the mouse. Neurosci. Lett.60 (1985) 227–230. CASPubMed Google Scholar
Tatemoto, K., Röckaeus, Å., Jörnvall, H., McDonald, T.J., and Mutt, V., Galanin—A novel biologically active peptide from porcine intestine. FEBS Lett_164_ (1983) 124–128. CASPubMed Google Scholar
Thoenen, H., and Tranzer, J.P., Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Arch. Pharmak. exp. Path.261 (1968) 271–288. CAS Google Scholar
Tramu, G., Pillez, A., and Leonardelli, J., An efficient method of antibody elution for the successive or simultaneous location of two antigens by immunocytochemistry. J. Histochem. Cytochem.26 (1978) 322–324. CASPubMed Google Scholar
Triller, A., Cluzeaud, F., and Korn, H. GABA-containing terminals can be opposed to glycine receptors at central synapses. Brain Res. (1987) in press.
Vincent, S.R., Satoh, K., Armstrong, D.M., and Fibiger, H.C., Substance P in the ascending cholinergic reticular system. Nature_306_ (1983) 688–691. CASPubMed Google Scholar
Wainer, B.H., Levey, A.I., Mufson, E.J., and Mesulam, M.M., Cholinergic systems in mammalian brain identified with antibodies against choline acetyltransferase. Neurochem. Int.6 (1984) 163–182. CASPubMed Google Scholar
Wall, P.D., and Fitzgerald, M., It substance P fails to fulfil the criteria as a neurotransmitter in somatosensory afferents, what might be its function?, in: Substance P in the Nervous System, pp. 249–266. Ciba Foundation Symposium 91, Pitman, London 1982. Google Scholar
Watt, C.B., Su, Y.T., and Lam, D.M.-K., Interactions between enkephalin and GABA in avian retina. Nature_311_ (1984) 761–763. CASPubMed Google Scholar
Weiler, R., and Ball, A.K., Co-localization of neurotensin-like immunoreactivity and3H-glycine uptake system in sustained amacrine cells of turtle retina. Nature_311_ (1984) 759–761. CASPubMed Google Scholar
Whitehouse, P.J., Price, D.L., Strable, R.G., Clark, A.W., Coyle, J.T., and DeLong, M.R., Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science_215_ (1982) 1237–1239. CASPubMed Google Scholar
Wiesenfeld-Hallin, Z., Hökfelt, T., Lundberg J.M., Forssmann, W.G., Reinecke, M., Tschopp, F.A., and Fischer, J.A., Immunoreactive calcitonin gene-related peptide and substance P coexist in sensory neurons to the spinal cord and interact in spinal behavioural responses of the rat. Neurosci. Lett.52 (1984) 199–204. CASPubMed Google Scholar
Zahm, D.S., Zaborszky, L., Alones, V.E., and Heimer, L., Evidence for the coexistence of glutamate decarboxylase and met-enkephalin immunoreactivities in axon terminals of rat ventral pallidum. Brain Res.325 (1985) 317–321. CASPubMed Google Scholar