Vertebrate circadian rhythms: Retinal and extraretinal photoreception (original) (raw)
H. Underwood, Extraretinal photoreception, in: The Behavioral Significance of Color, pp. 127–178. Ed. E.H. Burtt, Jr. Garland Press, New York 1979. Google Scholar
C.S. Pittendrigh, Circadian oscillations in cells and the circadian organization of multicellular systems. in: The Neurosciences Third Study Program, pp. 437–458. Eds F.O. Schmitt and F.G. Worden. MIT Press, Cambridge, Mass. 1974. Google Scholar
S.T. Inouye and H. Kawamura, Persistence of circadian rhythmicity in a mammalian hypothalamic ‘island’ containing the suprachiasmatic nucleus. Proc. natl Acad. Sci. USA_76_, 5962–5966 (1979). ArticleCASPubMedPubMed Central Google Scholar
S.A. Binkley, J.B. Riebman and K.B. Reilly, The pineal gland: a biological clock in vitro. Science_202_, 1198–1201 (1978). ArticleCASPubMed Google Scholar
M.C. Moore-Ede and F.M. Sulzman, The physiological basis of circadian timekeeping in primates. Physiologist_20_, 17–25 (1977). CASPubMed Google Scholar
J.S. Takahashi, H. Hamm and M. Menaker, Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro. Proc. natl Acad. Sci. USA_77_, 2319–2322 (1980). ArticleCASPubMedPubMed Central Google Scholar
E. Gwinner, Testosterone induces ‘splitting’ of circadian locomotor activity rhythms in birds. Science_185_, 72–74 (1974). ArticleCASPubMed Google Scholar
K. Hoffmann, Splitting of the circadian rhythm as a function of light intensity, in: Biochronometry, pp. 134–146. Ed. M. Menaker. Natl Acad. Sci. USA, Washington, DC, 1971. Google Scholar
C.S. Pittendrigh and S. Daan, A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure. A clock for all seasons. J. comp. Physiol.106, 333–355 (1976). Article Google Scholar
J. Aschoff, U. Gerecke and R. Wever, Desynchronization of human circadian rhythms. Jap. J. Physiol.17, 450–457 (1967). ArticleCAS Google Scholar
J.A. Kappers and P. Pévet eds. The Pineal Gland of Vertebrates Including Man, Prog. Brain Res. vol. 52. Elsevier/North-Holland Biomedical Press, New York 1979. Google Scholar
W.B. Quay, The parietal eye-pineal complex, in: Biology of the Reptilia, vol. 9, pp. 245–406. Ed. C. Gans. Academic Press, New York 1979. Google Scholar
D.I. Hamasaki and D.J. Eder, Adaptive radiation of the pineal system, in: Handbook of Sensory Physiology, pp. 497–548. Ed. F. Crescitelli. Springer, New York 1977. Google Scholar
H. Underwood, Evolution of the endocrine pineal organ, in: Evolution of Vertebrate Endocrine Systems, pp. 33–58. Eds P.K.T. Pang and A. Epple. Texas Tech Press, Lubbock, Texas 1980. Google Scholar
W.B. Quay, Pineal Chemistry, Thomas, Springfield, Ill. 1974. Google Scholar
P. Pévet, M.G.M. Balemans, W.C. Legerstee and B. Vivien-Roels, Circadian rhythmicity of the activity of hydroxyindole-O-methyl transferase (HIOMT) in the formation of melatonin and 5-methoxytryptophol in the pineal, retina, and Harderian gland of the golden hamster. J. neural Transmission_49_, 229–245 (1980). Article Google Scholar
H.E. Hamm and M. Menaker, Retinal rhythms in chicks: Circadian variation in melatonin and serotonin N-acetyltransferase activity. Proc. natl Acad. Sci. USA_77_, 4998–5002 (1980). ArticleCASPubMedPubMed Central Google Scholar
W.A. Gern, D.W. Owens and C.L. Ralph, The synthesis of melatonin by the trout retina. J. exp. Zool.206, 263–270 (1978). ArticleCAS Google Scholar
G.A. Bubenik, G.M. Brown and L.G. Grota, Differential localization of N-acetylated indolealkylamines in the CNS and the Harderian gland using immunohistology. Brain. Res.118, 417–427 (1976). ArticleCASPubMed Google Scholar
J.M.P. Joss, A rhythm in hydroxyindole-O-methyltransferase (HIOMT) activity in the scincid lizard,Lampropholas guichenoti. Gen comp. Endocr.36, 521–525 (1978). ArticleCASPubMed Google Scholar
G.A. Bubenik, R.A. Purtill, G.M. Brown and L.J. Grota, Melatonin in the retina and the Harderian gland. Ontogeny, diurnal variations and melatonin treatment. Exp. Eye Res.27, 323–333 (1978). ArticleCASPubMed Google Scholar
S. Binkley, K.B. Reilly and M. Hryshchyshy, N-acetyltransferase in the chick retina. 1. Circadian rhythms controlled by environmental lighting are similar to those in the pineal gland. J. comp. Physiol.139, 103–108 (1980). ArticleCAS Google Scholar
T. van Veen, H.-G. Hartwig and K. Müller, Light-dependent motor activity and photonegative behavior in the eel (Anguilla anguilla L.). Evidence for extraretinal and extrapineal photoreception. J. comp. Physiol.111, 209–219 (1976). Article Google Scholar
L.O. Eriksson, Die Jahresperiodik augen- und pinealorganloser Bachsaiblinge_Salvelinus fontinalis_ Mitchell. Aquilo Ser. Zool.13, 8–12 (1972). Google Scholar
M. Kavaliers, Retinal and extraretinal entrainment action spectra for the activity rhythms of the lake chub,Couesius plumbeus. Behav. neural Biol.30, 56–67 (1980). ArticleCASPubMed Google Scholar
B.L. Reed, The control of circadian pigment changes in the pencil fish: a proposed role for melatonin. Life Sci.7, 961–973 (1968). ArticleCASPubMed Google Scholar
H.-G. Hartwig and T. van Veen, Spectral characteristics of visible radiation penetrating into the brain and stimulating extraretinal photoreceptors. J. comp. Physiol.130, 277–282 (1979). Article Google Scholar
K. Müller, Seasonal phase shift and the duration of activity time in the Burbot,Lota lota (L.) (Pisces, Gadidae). J. comp. Physiol.84, 357–359 (1973). Article Google Scholar
K. Müller, The flexibility of the circadian system of fish at different latitudes, in: Rhythmic Activity of Fishes, pp. 91–104. Ed. J.E. Thorpe, Academic Press, New York 1978. Google Scholar
L.O. Eriksson, Nocturnalism versus diurnalism-dualism within fish individuals, in: Rhythmic Activity of Fishes, pp. 69–89. Ed. J.E. Thorpe, Academic Press, New York 1978. Google Scholar
M. Kavaliers, Circadian locomotor activity rhythms of the burbot,Lota lota: seasonal differences in period length and the effect of pinealectomy. J. comp. Physiol.136, 215–218 (1980). Article Google Scholar
M. Kavaliers, Pineal involvement in the control of circadian rhythmicity in the lake chub,Couesius plumbeus. J. exp. Zool.209, 33–40 (1979). Article Google Scholar
K. Adler, Extraocular photoreception in amphibians. Photochem. Photobiol.23, 275–298 (1976). ArticleCAS Google Scholar
K. Adler, Pineal end organ: Role in extraoptic entrainment of circadian locomotor rhythm in frogs, in: Biochronometry, pp. 342–350. Ed. M. Menaker. National Academy of Sciences, Washington, DC 1971. Google Scholar
J.J. Demian and D.H. Taylor, Photoreception and locomotor rhythm entrainment by the pineal body of the newt,Notophthalmus viridescens (Amphibia, Urodela, Salamandridae). J. Herpet.11, 131–139 (1977). Article Google Scholar
D.H. Taylor and D.E. Ferguson, Extraoptic orientation in the southern cricket frog,Acris gryllus. Science_168_, 390–392 (1970). ArticleCASPubMed Google Scholar
D.H. Taylor, Extra-optic photoreception and compass orientation in larval and adult salamanders (Ambystoma tigrinum). Anim. Behav.20, 233–236 (1972). ArticleCASPubMed Google Scholar
D.H. Taylor and K. Adler, The pineal body: site of extraocular perception of celestial cues for orientation in the tiger salamander (Ambystoma tigrinum). J. comp. Physiol.124, 357–361 (1978). Article Google Scholar
K. Adler and D.H. Taylor, Extraocular perception of polarized light by orienting salamanders. J. comp. Physiol.97, 203–212 (1973). Article Google Scholar
C.S. Justis and D.H. Taylor, Extraocular photoreception and compass orientation in larval bullfrogs,Rana catesbeiana. Copeia_1976_, 98–105.
K. Adler and D.H. Taylor, Melatonin and thyroxine: Influence on compass orientation in salamanders. J. comp. Physiol.136, 235–241 (1980). ArticleCAS Google Scholar
J. Cadusseau and G. Garland. Electrophysiological evidence for white light sensitivity of the encephalon in eyeless and pinealectomized frogs. Exp. Brain Res.40, 339–341 (1980). ArticleCASPubMed Google Scholar
H. Underwood, Retinal and extraretinal photoreceptors mediate entrainment of the circadian locomotor rhythm in lizards. J. comp. Physiol.83, 187–222 (1973). Article Google Scholar
H. Underwood and M. Menaker, Extraretinal photoreception in lizards. Photochem. Photobiol.23, 227–243 (1976). ArticleCAS Google Scholar
M. Kavaliers, Extraretinal mediation of responses to temperature and light in hatchling alligators. J. comp. Physiol.136, 243–246 (1980). Article Google Scholar
M. Kavaliers, Circadian rhythm of extraretinal photosensitivity in hatchling alligators,Alligator mississippiensis. Photochem. Photobiol.32, 67–70 (1980). ArticleCASPubMed Google Scholar
H. Underwood, Circadian organization in lizards: the role of the pineal organ. Science_195_, 587–589 (1977). ArticleCASPubMed Google Scholar
H. Underwood, Circadian organization in the lizard_Sceloporus occidentalis_: the effects of pinealectomy, blinding, and melatonin. J. comp. Physiol.141, 537–547 (1981). ArticleCAS Google Scholar
B. Vivien-Roels, J. Arendt and J. Bradtke, Circadian and circannual fluctuations of pineal indoleamines (serotonin and melatonin) in_Testudo hermanni_ Gmelin (Reptilia, chelonia). 1. Under natural conditions of photoperiod and temperature. Gen. comp. Endocr.37, 197–210 (1979). ArticleCASPubMed Google Scholar
H. Underwood, Melatonin affects circadian rhythmicity in lizards. J. comp. Physiol.130, 317–323 (1979). ArticleCAS Google Scholar
M. Menaker and H. Underwood, Extraretinal photoreception in birds. Photochem. Photobiol.23, 299–306 (1976). ArticleCAS Google Scholar
J.P. McMillan, H.C. Keatts and M. Menaker, On the role of eyes and brain photoreceptors in the sparrow: entrainment to light cycles. J. comp. Physiol.102, 251–256 (1975). Article Google Scholar
J.P. McMillan, J.A. Elliott and M. Menaker, On the role of eyes and brain photoreceptors in the sparrow: arrhythmicity in constant light. J. comp. Physiol.102, 263–268 (1975). Article Google Scholar
Y. Morita, Absence of electrical activity of the pigeon's pineal organ in response to light. Experientia_22_, 402 (1966). ArticleCASPubMed Google Scholar
C.L. Ralph and D.C. Dawson, Failure of the pineal body of two species of birds (Coturnix coturnix japonica and_Passer domesticus_) to show electrical responses to illumination. Experientia_24_, 147 (1968). ArticleCASPubMed Google Scholar
J.M. Rosner, J.H. Denari, C.A. Nagle, D.P. Cardinali, G. Declerq de Perez Bedes and L. Orsi, Direct action of light on serotonin metabolism and RNA biosynthesis in duck pineal explants. Life Sci.11, 829–836 (1972). ArticleCAS Google Scholar
E. Gwinner, Effects of pinealectomy on circadian locomotor activity rhythms in European starlings,Sturnus vulgaris, J. comp. Physiol.126, 123–129 (1978). Article Google Scholar
J.S. Takahashi and M. Menaker, Physiology of avian circadian pacemakers. Fedn Proc.38, 2583–2588 (1979). CAS Google Scholar
J.S. Takahashi and M. Menaker, Brain mechanisms in avian circadian systems, in: Biological Rhythms and their Central Mechanism, pp. 95–111. Eds M. Suda, O. Hayaishi and New York 1979.
N.H. Zimmerman and M. Menaker, The pineal gland: a pacemaker within the circadian system of the house sparrow. Proc. natl Acad. Sci. USA_76_, 999–1003 (1979). ArticleCASPubMedPubMed Central Google Scholar
F.W. Turek, J.P. McMillan and M. Menaker, Melatonin: effects on the circadian locomotor rhythm of sparrows. Science_194_, 1441–1443 (1976). ArticleCASPubMed Google Scholar
E. Gwinner and I. Benzinger, Synchronization of a circadian rhythm in pinealectomized European starlings by daily injections of melatonin. J. comp. Physiol.127, 209–213 (1978). ArticleCAS Google Scholar
S. Ebihara and H. Kawamura, Central mechanism of circadian rhythms in birds, in: Biological Rhythms in Birds: Neural and Endocrine Aspects, pp. 71–78. Eds Y. Tanabe, K. Tanaka and T. Ookawa. Japan Sci. Soc. Press, Tokyo 1980. Google Scholar
S. Binkley, S.E. MacBride, D.C. Klein and C.L. Ralph, Regulation of pineal rhythms in chickens: refractory period and nonvisual light perception. Endocrinology_96_, 848–853 (1975). ArticleCASPubMed Google Scholar
N. Bons and I. Assenmacher, Presence de fibres retiniennes dégénerées dans la région hypothalamique supra-optique du Canard après section d'un nerf optique. C.r. Acad. Sci. Paris_269_, 1535–1538 (1969). CAS Google Scholar
T. Deguchi, Shift of circadian rhythm of serotonin: acetylcoenzyme A N-acetyltransferase activity in pineal gland of rat in continuous darkness or in the blinded rat. J. Neurochem.25, 91–93 (1975). ArticleCASPubMed Google Scholar
F. Halberg, M.B. Visscher and J.J. Bittner, Relation of visual factors to eosinophil rhythm in mice. Am. J. Physiol.179, 229–235 (1954). ArticleCASPubMed Google Scholar
L.G. Browman, The effect of bilateral optic enucleation upon the activity rhythms of the albino rat. J. comp. Physiol.36, 33–46 (1943). Google Scholar
R.T. Bruss, E. Jacobson, F. Halberg, H.A. Zander and J.J. Bittner, Effects of lighting regimen and blinding upon gross motor activity of mice. Fedn Proc.17, 21 (1958). Google Scholar
J.M. Hunt and H. Schlosberg, The influence of illumination upon general activity in normal, blinded, and castrated male white rats. J. comp. Physiol.28, 285–298 (1939). Google Scholar
C.P. Richter, Biological clocks in medicine and psychiatry. C.C. Thomas, Springfield, Ill. 1965. Google Scholar
C.P. Richter, Inherent twenty-four hour and lunar clocks of a primate—the squirrel monkey. Commun. behav. Biol.1, 305–332 (1968). Google Scholar
G.A. Groos and D. van der Kooy, Functional absence of brain photoreceptors mediating entrainment of circadian rhythms in the adult rat. Experientia_37_, 71–72 (1981). ArticleCASPubMed Google Scholar
B. Rusak and I. Zucker, Neural regulation of circadian rhythms. Physiol. Rev.59, 449–526 (1979). ArticleCASPubMed Google Scholar
D.C. Klein and R.Y. Moore, Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: Control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res.174, 245–262 (1979). ArticleCASPubMed Google Scholar
W.B. Quay, Pineal homeostatic regulation of shifts in the circadian activity rhythm during maturation and aging, Trans. N.Y. Acad. Sci.34, 239–254 (1972). ArticleCASPubMed Google Scholar
F.A. Kincl, C.C. Chang and V. Zbuzkova, Observations on the influence of changing photoperiod on spontaneous wheel-running activity of neonatally pinealectomized rats. Endocrinology_87_, 38–42 (1970). ArticleCASPubMed Google Scholar
J.S. Finkelstein, F.R. Baum and C.S. Campbell, Entrainment of the female hamster to reversed photoperiod: Role of the pineal. Physiol. Behav.21, 105–111 (1978). ArticleCASPubMed Google Scholar
N. Dafny, Electrophysiological evidence of photic, acoustic and central input to the pineal body and hypothalamus. Exp. Neurol.55, 449–457 (1977). ArticleCASPubMed Google Scholar
N. Dafny, Photic input to rat pineal gland conveyed by both sympathetic and central afferents. J. neural Transmission_48_, 203–208 (1980). ArticleCAS Google Scholar
H.-W. Korf and U. Wagner, Evidence for a nervous connection between the brain and the pineal organ in the guinea-pig. Cell Tissue Res.209, 505–510 (1980). ArticleCASPubMed Google Scholar
D. Birch and G.H. Jacobs, Effects of constant illumination on vision in the albino rat. Physiol. Behav.19, 255–259 (1977). ArticleCASPubMed Google Scholar
D.G. Birch and G.H. Jacobs, Light-induced damage to photopic and scotopic mechanisms in the rat depends on rearing conditions. Exp. Neurol.68, 269–283 (1980). ArticleCASPubMed Google Scholar
K.V. Anderson and W.K. O'Steen, Black-white and pattern discrimination in rats without photoreceptors. Exp. Neurol.34, 446–454 (1972). ArticleCASPubMed Google Scholar
J. Dunn, R. Dyer and M. Bennett, Diurnal variation in plasma corticosterone following long-term exposure to continuous illumination. Endocrinology_90_, 1660–1663 (1972). ArticleCASPubMed Google Scholar
C.R.S. Machado, A.B.M. Machado and L.E. Wragg, Circadian serotonin rhythm control: Sympathetic and nonsympathetic pathways in rat pineals of different ages. Endocrinology_85_, 846–848 (1969). ArticleCASPubMed Google Scholar
C.R.S. Machado, L.E. Wragg and A.B.M. Machado, Circadian rhythm of serotonin in the pineal body of immunosympathectomized immature rats. Science_164_, 442–443 (1969). ArticleCASPubMed Google Scholar
L. Wetterberg, E. Geller and A. Yuwiler, Harderian gland: An extraretinal photoreceptor influencing the pineal gland in neonatal rats? Science_167_, 884–885 (1970). ArticleCASPubMed Google Scholar
M. Zweig, S.H. Snyder and J. Axelrod, Evidence for a nonretinal pathway of light to the pineal gland of newborn rats. Proc. natl Acad. Sci. USA_56_, 515–520 (1966). ArticleCASPubMedPubMed Central Google Scholar
L. Wetterberg, A. Yuwiler, R. Ulrich, E. Geller and R. Wallace, Harderian gland: Influence on pineal hydroxyindole-O-methyltransferase activity in neonatal rats. Science_170_, 194–196 (1970). ArticleCASPubMed Google Scholar
B.L. Zimmerman and M.O.M. Tso, Morphologic evidence of photoreceptor differentiation of pinealocytes in the neonatal rat. J. Cell Biol.66, 60–75 (1975). ArticleCASPubMed Google Scholar
C.R.S. Machado, L.E. Wragg and A.B.M. Machado, A histochemical study of sympathetic innervation and 5-hydroxytryptamine in the developing pineal body of the rat. Brain Res.8, 310–318 (1968). ArticleCASPubMed Google Scholar
J.L. Fuchs and R.Y. Moore, Development of circadian rhythmicity and light responsiveness in the rat suprachiasmatic nucleus: a study using the 2-deoxy [1-14C] glucose method. Proc. natl Acad. Sci. USA_77_, 1204–1208 (1980). ArticleCASPubMedPubMed Central Google Scholar
M.M. LaVail and P.A. Ward, Studies on the hormonal control of circadian outer segment disc shedding in the rat retina, Invest. Ophthalm. vis. Sci.17, 1189–1193 (1978). CAS Google Scholar
P.S. Teirstein, A.I. Goldman and P.J. O'Brien, Evidence for both local and central regulation of rat rod outer segment disc shedding. Invest. Opthalm. vis. Sci.19, 1268–1273 (1980). CAS Google Scholar
M. Tamai, P. Teirstein, A. Goldman, P. O'Brien and G. Chader, The pineal gland does not control rod outer segment shedding and phagocytosis in the rat retina and pigment epithelium. Invest. Ophthalm. vis. Sci.17, 558–562 (1978). CAS Google Scholar
J. Benoit, Etude de l'action des radiations visibles de différentes longueurs d'onde sur la gonadostimulation et de leur pénetration transcrânienne chez les Oiseaux et les Mammifères. Coll. int. C.N.R.S.172, 121–146 (1970). Google Scholar
K. Homma and Y. Sakakibara, Encephalic photoreceptors and their significance in photoperiodic control of sexual activity in Japanese quail, in: Biochronometry, pp. 333–341. Ed. M. Menaker, Natl Acad. Sci. USA, Washington, DC 1971. Google Scholar
K. Yokoyama, A. Oksche, T.R. Darden and D.S. Farner, The sites of encephalic photoreception in photoperiodic induction of the growth of the testes in the white-crowned sparrow,Zonotrichia leucophrys gambelii. Cell Tiss. Res.189, 441–467 (1978). ArticleCAS Google Scholar
J. Oliver and J.D. Baylé, Brain photoreceptors for photoinduced testicular response in birds. Experientia_38_, 1021–1029 (1982). ArticleCASPubMed Google Scholar