Mutations of the SL2 dimerization sequence of the hepatitis C genome abrogate viral replication (original) (raw)
Abstract
Stem-loop SL2 is a self-interacting palindromic sequence that has been identified within the hepatitis C virus genome (HCV). While, RNA dimerization of the HCV genome has been observed in vitro with short RNA sequences, the role of a putative RNA dimerization during viral replication has not been elucidated. To determine the effect of genomic dimerization on viral replication, we introduced mutations into SL2 predicted to disrupt genomic dimerization. Using surface plasmon resonance, we show that mutations within the SL2 bulge impact dimerization in vitro. Transfection of Huh7 cells with luciferase-encoding full-length genomes containing SL2 mutations abolishes viral replication. Luciferase expression indicates that viral translation is not or slightly affected and that the viral RNA is properly encapsidated. However, RT-qPCR analysis demonstrates that viral RNA synthesis is drastically decreased. In vitro synthesis experiments using the viral recombinant polymerase show that modifications of intra-molecular interactions have no effect on RNA synthesis, while impairing inter-molecular interactions decreases polymerase activity. This confirms that dimeric templates are preferentially replicated by the viral polymerase. Altogether, these results indicate that the dimerization of the HCV genomic RNA is a crucial step for the viral life cycle especially for RNA replication. RNA dimerization could explain the existence of HCV recombinants in cell culture and patients reported recently in other studies.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime View plans
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
References
- Romero-López C (2014) Structure-function relationship in viral RNA genomes: the case of hepatitis C virus. World J Med Genet 4:6. doi:10.5496/wjmg.v4.i2.6
Article Google Scholar - Diaz-Toledano R, Ariza-Mateos A, Birk A et al (2009) In vitro characterization of a miR-122-sensitive double-helical switch element in the 5′ region of hepatitis C virus RNA. Nucleic Acids Res. doi:10.1093/nar/gkp553
PubMed Central PubMed Google Scholar - Romero-Lopez C, Barroso-delJesus A, Garcia-Sacristan A et al (2014) End-to-end crosstalk within the hepatitis C virus genome mediates the conformational switch of the 3′X-tail region. Nucleic Acids Res 42:567–582. doi:10.1093/nar/gkt841
Article CAS PubMed Central PubMed Google Scholar - Tuplin A, Struthers M, Simmonds P, Evans DJ (2012) A twist in the tail: SHAPE mapping of long-range interactions and structural rearrangements of RNA elements involved in HCV replication. Nucleic Acids Res. doi:10.1093/nar/gks370
PubMed Central PubMed Google Scholar - Diviney S, Tuplin A, Struthers M et al (2008) A hepatitis C virus cis-acting replication element forms a long-range RNA-RNA interaction with upstream RNA sequences in NS5B. J Virol 82:9008–9022. doi:10.1128/JVI.02326-07
Article CAS PubMed Central PubMed Google Scholar - Friebe P, Boudet J, Simorre JP, Bartenschlager R (2005) Kissing-loop interaction in the 3′ end of the hepatitis C virus genome essential for RNA replication. J Virol 79:380–392
Article CAS PubMed Central PubMed Google Scholar - You S, Stump DD, Branch AD, Rice CM (2004) A cis-acting replication element in the sequence encoding the NS5B RNA-dependent RNA polymerase is required for hepatitis C Virus RNA replication. J Virol 78:1352–1366
Article CAS PubMed Central PubMed Google Scholar - Kim YK, Lee SH, KIM CS et al (2003) Long-range RNA–RNA interaction between the 5′ nontranslated region and the core-coding sequences of hepatitis C virus modulates the IRES-dependent translation. RNA 9:599–606
Article CAS PubMed Central PubMed Google Scholar - Romero-Lopez C, Diaz-Gonzalez R, Barroso-Deljesus A, Berzal-Herranz A (2009) Inhibition of HCV replication and IRES-dependent translation by an RNA molecule. J Gen Virol. doi:10.1099/vir.0.008821-0
PubMed Google Scholar - Housset V, De Rocquigny H, Roques BP et al (1993) Basic amino acids flanking the zinc finger of Moloney murine leukemia virus nucleocapsid protein NCp10 are critical for virus infectivity. J Virol 67:2537–2545
CAS PubMed Central PubMed Google Scholar - Johnson SF, Telesnitsky A (2010) Retroviral RNA dimerization and packaging: the what, how, when, where, and why. PLoS Pathog 6:e1001007. doi:10.1371/journal.ppat.1001007
Article PubMed Central PubMed Google Scholar - Ishimaru D, Plant EP, Sims AC et al (2013) RNA dimerization plays a role in ribosomal frameshifting of the SARS coronavirus. Nucleic Acids Res 41:2594–2608. doi:10.1093/nar/gks1361
Article CAS PubMed Central PubMed Google Scholar - Cristofari G, Ivanyi-Nagy R, Gabus C et al (2004) The hepatitis C virus core protein is a potent nucleic acid chaperone that directs dimerization of the viral (+) strand RNA in vitro. Nucl Acids Res 32:2623–2631
Article CAS PubMed Central PubMed Google Scholar - Sharma KK, de Rocquigny H, Darlix JL et al (2012) Analysis of the RNA chaperoning activity of the hepatitis C virus core protein on the conserved 3′X region of the viral genome. Nucleic Acids Res 40:2540–2553. doi:10.1093/nar/gkr1140
Article CAS PubMed Central PubMed Google Scholar - Shetty S, Stefanovic S, Mihailescu MR (2012) Hepatitis C virus RNA: molecular switches mediated by long-range RNA–RNA interactions? Nucleic Acids Res. doi:10.1093/nar/gks1318
PubMed Central PubMed Google Scholar - Ivanyi-Nagy R, Kanevsky I, Gabus C et al (2006) Analysis of hepatitis C virus RNA dimerization and core-RNA interactions. Nucleic Acids Res 34:2618–2633
Article CAS PubMed Central PubMed Google Scholar - Shetty S, Kim S, Shimakami T et al (2010) Hepatitis C virus genomic RNA dimerization is mediated via a kissing complex intermediate. RNA 16:913–925
Article CAS PubMed Central PubMed Google Scholar - Palau W, Masante C, Ventura M, Di Primo C (2013) Direct evidence for RNA–RNA interactions at the 3′ end of the Hepatitis C virus genome using surface plasmon resonance. RNA. doi:10.1261/rna.037606.112
PubMed Central PubMed Google Scholar - Morel V, Fournier C, François C et al (2011) Genetic recombination of the hepatitis C virus: clinical implications. J Viral Hepat 18:77–83. doi:10.1111/j.1365-2893.2010.01367.x
Article CAS PubMed Google Scholar - Galli A, Bukh J (2014) Comparative analysis of the molecular mechanisms of recombination in hepatitis C virus. Trends Microbiol. doi:10.1016/j.tim.2014.02.005
PubMed Google Scholar - Scheel TKH, Galli A, Li Y-P et al (2013) Productive homologous and non-homologous recombination of hepatitis C virus in cell culture. PLoS Pathog 9:e1003228. doi:10.1371/journal.ppat.1003228
Article CAS PubMed Central PubMed Google Scholar - González-Candelas F, López-Labrador FX, Bracho MA (2011) Recombination in hepatitis C Virus. Viruses 3:2006–2024. doi:10.3390/v3102006
Article PubMed Central PubMed Google Scholar - Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 38:3406–3415
Article Google Scholar - Dumas E, Masante C, Astier-Gin T et al (2007) The hepatitis C virus minigenome: a new cellular model for studying viral replication. J Virol Methods 142:59–66
Article CAS PubMed Google Scholar - Bitard J, Chognard G, Dumas E et al (2010) Hijacking hepatitis C viral replication with a non-coding replicative RNA. Antivir Res 87:9–15
Article CAS PubMed Google Scholar - Di Primo C, Dausse E, Toulmé J-J (2011) Surface plasmon resonance investigation of RNA aptamer–RNA ligand interactions. In: Goodchild J (ed) Therapeutic oligonucleotides. Humana Press, New York, pp 279–300
Chapter Google Scholar - Waxman S, Wurmbach E (2007) De-regulation of common housekeeping genes in hepatocellular carcinoma. BMC Genom 8:243
Article Google Scholar - Astier-Gin T, Bellecave P, Litvak S, Ventura M (2005) Template requirements and binding of hepatitis C virus NS5B polymerase during in vitro RNA synthesis from the 3′-end of virus minus-strand RNA. FEBS J 272:3872–3886
Article CAS PubMed Google Scholar - Mahias K, Ahmed-El-Sayed N, Masante C et al (2010) Identification of a structural element of the hepatitis C virus minus strand RNA involved in the initiation of RNA synthesis. Nucleic Acids Res 38:4079–4091
Article CAS PubMed Central PubMed Google Scholar - Bender W, Davidson N (1976) Mapping of poly(A) sequences in the electron microscope reveals unusual structure of type C oncornavirus RNA molecules. Cell 7:595–607
Article CAS PubMed Google Scholar - Mujeeb A, Clever JL, Billeci TM et al (1998) Structure of the dimer initiation complex of HIV-1 genomic RNA. Nat Struct Biol 5:432–436
Article CAS PubMed Google Scholar - Chen J, Nikolaitchik O, Singh J et al (2009) High efficiency of HIV-1 genomic RNA packaging and heterozygote formation revealed by single virion analysis. Proc Natl Acad Sci 106:13535–13540. doi:10.1073/pnas.0906822106
Article CAS PubMed Central PubMed Google Scholar
Acknowledgments
We thank the structural biophysico-chemistry facility (UMS 3033/US001) of the Institut Européen de Chimie et Biologie (Pessac, France) for access to the Biacore T200 instrument that was acquired with the support of the Conseil Régional d’Aquitaine, the GIS-IBiSA, and the Cellule Hôtels à Projets of the CNRS. This work was supported by the Agence Nationale de Recherche contre le SIDA (ANRS), the Centre National de la Recherche Scientifique (CNRS), the Institut National de la Santé et de la Recherche Médicale (INSERM) and the Université de Bordeaux. The authors would like to thank Dr. Clint Smith for critical review of the manuscript.
Author information
Author notes
Authors and Affiliations
- Univ. Bordeaux, Laboratoire MFP, 33076, Bordeaux, France
Cyril Masante, Chloé Jaubert, Jacqueline Plissonneau, Lucie Besnard & Michel Ventura - CNRS UMR 5234, Laboratoire MFP, 33076, Bordeaux, France
Cyril Masante, Chloé Jaubert, Jacqueline Plissonneau, Lucie Besnard & Michel Ventura - Univ. Bordeaux, Laboratoire ARNA, 33076, Bordeaux, France
William Palau & Carmelo Di Primo - INSERM, U869, Laboratoire ARNA, 33607, Pessac, France
William Palau & Carmelo Di Primo
Authors
- Cyril Masante
- Chloé Jaubert
- William Palau
- Jacqueline Plissonneau
- Lucie Besnard
- Michel Ventura
- Carmelo Di Primo
Corresponding authors
Correspondence toMichel Ventura or Carmelo Di Primo.
Additional information
C. Masante and C. Jaubert are the joint first authors.
M. Ventura and C. Di Primo contributed equally to this work.
Rights and permissions
About this article
Cite this article
Masante, C., Jaubert, C., Palau, W. et al. Mutations of the SL2 dimerization sequence of the hepatitis C genome abrogate viral replication.Cell. Mol. Life Sci. 72, 3375–3385 (2015). https://doi.org/10.1007/s00018-015-1893-3
- Received: 17 December 2014
- Revised: 03 March 2015
- Accepted: 20 March 2015
- Published: 28 March 2015
- Issue date: September 2015
- DOI: https://doi.org/10.1007/s00018-015-1893-3