Role of bone marrow adipocytes in leukemia and chemotherapy challenges (original) (raw)
Askmyr M, Quach J, Purton LE (2011) Effects of the bone marrow microenvironment on hematopoietic malignancy. Bone 48(1):115–120 ArticlePubMed Google Scholar
Cawthorn WP, Scheller EL, Learman BS, Parlee SD, Simon BR, Mori H et al (2014) Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab 20(2):368–375 ArticleCASPubMedPubMed Central Google Scholar
Wöhrer S, Rabitsch W, Shehata M, Kondo R, Esterbauer H, Streubel B et al (2007) Mesenchymal stem cells in patients with chronic myelogenous leukaemia or bi-phenotypic Ph+ acute leukaemia are not related to the leukaemic clone. Anticancer Res 27(6):3837–3841 PubMed Google Scholar
Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I (2014) Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases. Cancer Metastasis Rev 33(2–3):527–543 ArticleCASPubMedPubMed Central Google Scholar
Fitter S, Vandyke K, Schultz CG, White D, Hughes TP, Zannettino AC (2010) Plasma adiponectin levels are markedly elevated in imatinib-treated chronic myeloid leukemia (CML) patients: a mechanism for improved insulin sensitivity in type 2 diabetic CML patients? J Clin Endocrinol Metab 95(8):3763–3767 ArticleCASPubMed Google Scholar
Johrer K, Ploner C, Thangavadivel S, Wuggenig P, Greil R (2015) Adipocyte-derived players in hematologic tumors: useful novel targets? Expert Opin Biol Ther 15(1):61–77 ArticleCASPubMed Google Scholar
Lu W, Wan Y, Li Z, Zhu B, Yin C, Liu H et al (2018) Growth differentiation factor 15 contributes to marrow adipocyte remodeling in response to the growth of leukemic cells. J Exp Clin Cancer Res 66(1):37 Google Scholar
Shafat MS, Oellerich T, Mohr S, Robinson SD, Edwards DR, Marlein CR et al (2017) Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood 129(10):1320–1332 ArticleCASPubMed Google Scholar
Feldman BJ, Streeper RS, Farese RV, Yamamoto KR (2006) Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proc Natl Acad Sci USA 103(42):15675–15680 ArticleCASPubMed Google Scholar
Tucci J, Sheng X, Mittelman SD (2014) Acute lymphoblastic leukemia cells stimulate adipocyte lipolysis and utilize adipocyte-derived free-fatty acids for proliferation. AACR. https://doi.org/10.1158/1538-7445 Article Google Scholar
Zaidi N, Lupien L, Kuemmerle NB, Kinlaw WB, Swinnen JV, Smans K (2013) Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res 52(4):585–589 ArticleCASPubMedPubMed Central Google Scholar
Lu W, Weng W, Zhu Q, Zhai Y, Wan Y, Liu H et al (2018) Small bone marrow adipocytes predict poor prognosis in acute myeloid leukemia. Haematologica. 103(1):e21–e24 ArticleCASPubMedPubMed Central Google Scholar
Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank A-M, Bocian C et al (2017) Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20(6):771–846 ArticleCASPubMedPubMed Central Google Scholar
Scheller EL, Rosen CJ (2014) What’s the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci 1311:14–30 ArticleCASPubMedPubMed Central Google Scholar
Ohishi M, Schipani E (2010) Bone marrow mesenchymal stem cells. J Cell Biochem 109(2):277–282 CASPubMed Google Scholar
Torii I, Morikawa S, Nakano A, Morikawa K (2003) Establishment of a human preadipose cell line, HPB-AML-I: Refractory to PPARγ-mediated adipogenic stimulation. J Cell Physiol 197(1):42–52 ArticleCASPubMed Google Scholar
Falconi D, Oizumi K, Aubin JE (2007) Leukemia inhibitory factor influences the fate choice of mesenchymal progenitor cells. Stem Cells 25(2):305–312 ArticleCASPubMed Google Scholar
Reiter SS, Halsey CH, Stronach BM, Bartosh JL, Owsley WF, Bergen WG (2007) Lipid metabolism related gene-expression profiling in liver, skeletal muscle and adipose tissue in crossbred Duroc and Pietrain pigs. Comp Biochem Physiol Part D 2(3):200–206 Google Scholar
Vicente Lopez A, Vazquez Garcia MN, Melen GJ, Entrena Martinez A, Cubillo Moreno I, Garcia-Castro J et al (2014) Mesenchymal stromal cells derived from the bone marrow of acute lymphoblastic leukemia patients show altered BMP4 production: correlations with the course of disease. PLoS One 9(1):e84496 ArticleCASPubMedPubMed Central Google Scholar
Ikeda S, Itoh S, Yamamoto Y, Yamauchi Y, Matsushita K, Naruse H et al (2016) Developmental stage-dependent effects of leukemia inhibitory factor on adipocyte differentiation of murine bone marrow stromal cells. Cell Biochem Biophys 74(1):11–17 ArticleCASPubMed Google Scholar
Hogan JC, Stephens JM (2005) Effects of leukemia inhibitory factor on 3T3-L1 adipocytes. J Endocrinol 185(3):485–496 ArticleCASPubMed Google Scholar
Chen X, Hausman BS, Luo G, Zhou G, Murakami S, Rubin J et al (2013) Protein kinase inhibitor gamma reciprocally regulates osteoblast and adipocyte differentiation by downregulating leukemia inhibitory factor. Stem Cells 31(12):2789–2799 ArticleCASPubMedPubMed Central Google Scholar
Fox KE, Fankell DM, Erickson PF, Majka SM, Crossno JT Jr, Klemm DJ (2006) Depletion of cAMP-response element-binding protein/ATF1 inhibits adipogenic conversion of 3T3-L1 cells ectopically expressing CCAAT/enhancer-binding protein (C/EBP) alpha, C/EBP beta, or PPAR gamma 2. J Biol Chem 281(52):40341–40353 ArticleCASPubMed Google Scholar
Petersen RK, Madsen L, Pedersen LM, Hallenborg P, Hagland H, Viste K et al (2008) Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac- and cAMP-dependent protein kinase-dependent processes. Mol Cell Biol 28(11):3804–3816 ArticleCASPubMedPubMed Central Google Scholar
Li F, Wang D, Zhou Y, Zhou B, Yang Y, Chen H et al (2008) Protein kinase A suppresses the differentiation of 3T3-L1 preadipocytes. Cell Res 18(2):311–323 ArticleCASPubMed Google Scholar
Li H, Fong C, Chen Y, Cai G, Yang M (2010) Beta-adrenergic signals regulate adipogenesis of mouse mesenchymal stem cells via cAMP/PKA pathway. Mol Cell Endocrinol 323(2):201–207 ArticleCASPubMed Google Scholar
Battula VL, Chen Y, Cabreira Mda G, Ruvolo V, Wang Z, Ma W et al (2013) Connective tissue growth factor regulates adipocyte differentiation of mesenchymal stromal cells and facilitates leukemia bone marrow engraftment. Blood 122(3):357–366 ArticleCASPubMedPubMed Central Google Scholar
Battula VL, Le PM, Sun JC, Nguyen K, Yuan B, Zhou X et al (2017) AML-induced osteogenic differentiation in mesenchymal stromal cells supports leukemia growth. JCI Insight 2:13 Article Google Scholar
Boyd AL, Reid JC, Salci KR, Aslostovar L, Benoit YD, Shapovalova Z et al (2017) Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche. Nat Cell Biol 19(11):1336 ArticleCASPubMed Google Scholar
Takam Kamga P, Bassi G, Cassaro A, Midolo M, Di Trapani M, Gatti A et al (2016) Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia. Oncotarget 7(16):21713–21727 PubMed Google Scholar
Mattiucci D, Maurizi G, Izzi V, Cenci L, Ciarlantini M, Mancini S et al (2018) Bone marrow adipocytes support hematopoietic stem cell survival. J Cell Physiol 233(2):1500–1511 ArticleCASPubMed Google Scholar
Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460(7252):259–263 ArticleCASPubMedPubMed Central Google Scholar
Zhou BO, Yu H, Yue R, Zhao Z, Rios JJ, Naveiras O (2017) Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol 19(8):891–903 ArticleCASPubMedPubMed Central Google Scholar
Tabe Y, Yamamoto S, Saitoh K, Sekihara K, Monma N, Ikeo K et al (2017) Bone marrow adipocytes facilitate fatty acid oxidation activating AMPK and a transcriptional network supporting survival of acute monocytic leukemia cells. Cancer Res 77(6):1453–1464 ArticleCASPubMedPubMed Central Google Scholar
Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B et al (2010) Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 120(1):142–156 ArticleCASPubMed Google Scholar
Perea G, Domingo A, Villamor N, Palacios C, Junca J, Torres P et al (2005) Adverse prognostic impact of CD36 and CD2 expression in adult de novo acute myeloid leukemia patients. Leukemia Res 29(10):1109–1116 ArticleCAS Google Scholar
Ye H, Adane B, Khan N, Sullivan T, Minhajuddin M, Gasparetto M et al (2016) Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell 19(1):23–37 ArticleCASPubMedPubMed Central Google Scholar
Frączak E, Olbromski M, Piotrowska A, Glatzel-Plucińska N, Dzięgiel P, Dybko J et al (2018) Bone marrow adipocytes in haematological malignancies. Acta Histochem 120(1):22–27 ArticleCASPubMed Google Scholar
Caers J, Deleu S, Belaid Z, De Raeve H, Van Valckenborgh E, De Bruyne E et al (2007) Neighboring adipocytes participate in the bone marrow microenvironment of multiple myeloma cells. Leukemia 21(7):1580 ArticleCASPubMed Google Scholar
Avcu F, Ural AU, Yilmaz MI, Bingol N, Nevruz O, Caglarc K (2006) Association of plasma adiponectin concentrations with chronic lymphocytic leukemia and myeloproliferative diseases. Int J Hematol 83(3):254–258 ArticlePubMed Google Scholar
Jöhrer K, Ploner C, Thangavadivel S, Wuggenig P, Greil R (2015) Adipocyte-derived players in hematologic tumors: useful novel targets? Expert Opin Biol Therss 15(1):61–77 ArticleCAS Google Scholar
Petridou E, Mantzoros C, Dessypris N, Dikalioti S, Trichopoulos D (2006) Adiponectin in relation to childhood myeloblastic leukaemia. Br J Cancer 94(1):156 ArticleCASPubMedPubMed Central Google Scholar
Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N et al (2000) Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96(5):1723–1732 CASPubMed Google Scholar
Yamauchi T, Kamon J, Ya Minokoshi, Ito Y, Waki H, Uchida S et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8(11):1288 ArticleCASPubMed Google Scholar
Medina E, Oberheu K, Polusani S, Ortega V, Velagaleti G, Oyajobi B (2014) PKA/AMPK signaling in relation to adiponectin’s antiproliferative effect on multiple myeloma cells. Leukemia 28(10):2080–2089 ArticleCASPubMed Google Scholar
Dalamaga M, Karmaniolas K, Panagiotou A, Hsi A, Chamberland J, Dimas C et al (2009) Low circulating adiponectin and resistin, but not leptin, levels are associated with multiple myeloma risk: a case-control study. Cancer Causes Control 20(2):9–193 Article Google Scholar
Hino M, Nakao T, Yamane T, Ohta K, Takubo T, Tatsumi N (2000) Leptin receptor and leukemia. Leuk Lymphoma 36(5–6):457–461 ArticleCASPubMed Google Scholar
Kohler J, Moon R, Wright S, Willows E, Davies J (2011) Increased adiposity and altered adipocyte function in female survivors of childhood acute lymphoblastic leukaemia treated without cranial radiation. Horm Res Paediatr 75(6):433–440 ArticleCASPubMed Google Scholar
Tabe Y, Konopleva M, Munsell MF, Marini FC, Zompetta C, McQueen T et al (2004) PML-RARα is associated with leptin-receptor induction: the role of mesenchymal stem cell–derived adipocytes in APL cell survival. Blood 103(5):1815–1822 ArticleCASPubMed Google Scholar
Foss B, Mentzoni L, Bruserud O (2001) Effects of vascular endothelial growth factor on acute myelogenous leukemia blasts. J Hematother Stem Cell Res℃ 10(1):81–93 ArticleCASPubMed Google Scholar
Gorska E, Popko K, Wasik M (2013) Leptin receptor in childhood acute leukemias. Adv Exp Med Biol 756:155–161 ArticleCASPubMed Google Scholar
Juarez J, Bradstock KF, Gottlieb DJ, Bendall LJ (2003) Effects of inhibitors of the chemokine receptor CXCR4 on acute lymphoblastic leukemia cells in vitro. Leukemia 17(7):1294–1300 ArticleCASPubMed Google Scholar
Hosokawa Y, Hosokawa I, Ozaki K, Nakae H, Murakami K, Miyake Y et al (2005) CXCL12 and CXCR4 expression by human gingival fibroblasts in periodontal disease. Clin Exp Immunol 141(3):467–474 ArticleCASPubMedPubMed Central Google Scholar
Diaz-Blanco E, Bruns I, Neumann F, Fischer JC, Graef T, Rosskopf M et al (2007) Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia 21(3):494–504 ArticleCASPubMed Google Scholar
Beaulieu A, Poncin G, Belaid-Choucair Z, Humblet C, Bogdanovic G, Lognay G et al (2011) Leptin reverts pro-apoptotic and antiproliferative effects of α-linolenic acids in BCR-ABL positive leukemic cells: involvement of PI3K pathway. PLoS One 6(10):e25651 ArticleCASPubMedPubMed Central Google Scholar
Mouzaki A, Panagoulias I, Dervilli Z, Zolota V, Spadidea P, Rodi M et al (2009) Expression patterns of leptin receptor (OB-R) isoforms and direct in vitro effects of recombinant leptin on OB-R, leptin expression and cytokine secretion by human hematopoietic malignant cells. Cytokine 48(3):203–211 ArticleCASPubMed Google Scholar
Sheng X, Mittelman SD (2014) The role of adipose tissue and obesity in causing treatment resistance of acute lymphoblastic leukemia. Front Pediatr 2:53 ArticlePubMedPubMed Central Google Scholar
Schlottmann I, Ehrhart-Bornstein M, Wabitsch M, Bornstein SR, Lamounier-Zepter V (2014) Calcium-dependent release of adipocyte fatty acid binding protein from human adipocytes. Int J Obes (Lond) 38(9):1221–1227 ArticleCAS Google Scholar
Cao H, Sekiya M, Ertunc ME, Burak MF, Mayers JR, White A et al (2013) Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production. Cell Metab 17(5):768–778 ArticleCASPubMedPubMed Central Google Scholar
Hotamisligil GS, Bernlohr DA (2015) Metabolic functions of FABPs–mechanisms and therapeutic implications. Nat Rev Endocrinol 11(10):592–605 ArticleCASPubMedPubMed Central Google Scholar
Maher M, Diesch J, Casquero R, Buschbeck M (2018) Epigenetic-transcriptional regulation of fatty acid metabolism and its alterations in leukaemia. Front Genet 9:405 ArticleCASPubMedPubMed Central Google Scholar
Yan F, Shen N, Pang JX, Zhang YW, Rao EY, Bode AM et al (2017) Fatty acid-binding protein FABP4 mechanistically links obesity with aggressive AML by enhancing aberrant DNA methylation in AML cells. Leukemia 31(6):42–1434 ArticleCAS Google Scholar
Abdelwahab SA, Owada Y, Kitanaka N, Adida A, Sakagami H, Ono M et al (2007) Enhanced expression of adipocyte-type fatty acid binding protein in murine lymphocytes in response to dexamethasone treatment. Mol Cell Biochem 299(1–2):99–107 ArticleCASPubMed Google Scholar
Kiraly O, Gong G, Olipitz W, Muthupalani S, Engelward BP (2015) Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet 11(2):e1004901 ArticleCASPubMedPubMed Central Google Scholar
Thomas D, Majeti R (2016) Burning fat fuels leukemic stem cell heterogeneity. Cell Stem Cell 19(1):1–2 ArticleCASPubMed Google Scholar
Khandekar MJ, Cohen P, Spiegelman BM (2011) Molecular mechanisms of cancer development in obesity. Nat Rev Cancer 11(12):886–895 ArticleCASPubMed Google Scholar
Rozovski U, Hazan-Halevy I, Barzilai M, Keating MJ, Estrov Z (2016) Metabolism pathways in chronic lymphocytic leukemia. Leuk Lymphoma 57(4):758–765 ArticleCASPubMed Google Scholar
Rozovski U, Grgurevic S, Bueso-Ramos C, Harris DM, Li P, Liu Z et al (2015) Aberrant LPL expression, driven by STAT3, mediates free fatty acid metabolism in CLL cells. Mol Cancer Res 13(5):944–953 ArticleCASPubMedPubMed Central Google Scholar
Ruby MA, Goldenson B, Orasanu G, Johnston TP, Plutzky J, Krauss RM (2010) VLDL hydrolysis by LPL activates PPAR-alpha through generation of unbound fatty acids. J Lipid Res 51(8):2275–2281 ArticleCASPubMedPubMed Central Google Scholar
Tung S, Shi Y, Wong K, Zhu F, Gorczynski R, Laister RC et al (2013) PPARalpha and fatty acid oxidation mediate glucocorticoid resistance in chronic lymphocytic leukemia. Blood 122(6):969–980 ArticleCASPubMed Google Scholar
Sheng X, Parmentier JH, Tucci J, Pei H, Cortez-Toledo O, Dieli-Conwright CM et al (2017) Adipocytes sequester and metabolize the chemotherapeutic daunorubicin. Mol Cancer Res 15(12):1704–1713 ArticleCASPubMedPubMed Central Google Scholar
Cahu X, Calvo J, Poglio S, Prade N, Colsch B, Arcangeli M-L et al (2017) Bone marrow sites differently imprint dormancy and chemoresistance to T-cell acute lymphoblastic leukemia. Blood Adv 1(20):1760–1772 CASPubMedPubMed Central Google Scholar
Behan JW, Yun JP, Proektor MP, Ehsanipour EA, Arutyunyan A, Moses AS et al (2009) Adipocytes impair leukemia treatment in mice. Cancer Res 69(19):7867–7874 ArticleCASPubMedPubMed Central Google Scholar
Pramanik R, Sheng X, Ichihara B, Heisterkamp N, Mittelman SD (2013) Adipose tissue attracts and protects acute lymphoblastic leukemia cells from chemotherapy. Leuk Res 37(5):503–509 ArticleCASPubMedPubMed Central Google Scholar
Carneiro IP, Mazurak VC, Prado CM (2016) Clinical implications of sarcopenic obesity in cancer. Curr Oncol Rep 18(10):62 ArticlePubMed Google Scholar
Bolan PJ, Arentsen L, Sueblinvong T, Zhang Y, Moeller S, Carter JS et al (2013) Water-fat MRI for assessing changes in bone marrow composition due to radiation and chemotherapy in gynecologic cancer patients. J Magn Reson Imaging 38(6):1578–1584 ArticlePubMed Google Scholar
Liu H, Zhai Y, Zhao W, Wan Y, Lu W, Yang S et al (2018) Consolidation chemotherapy prevents relapse by indirectly regulating bone marrow adipogenesis in patients with acute myeloid leukemia. Cell Physiol Biochem 45(6):2389–2400 ArticleCASPubMed Google Scholar
Miyashita T, Reed JC (1993) Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 81(1):151–157 CASPubMed Google Scholar
Zhang Y, Wang Z, Li X, Magnuson N (2008) Pim kinase-dependent inhibition of c-Myc degradation. Oncogene 27(35):4809 ArticleCASPubMed Google Scholar
Sheng X, Tucci J, Parmentier JH, Ji L, Behan JW, Heisterkamp N et al (2016) Adipocytes cause leukemia cell resistance to daunorubicin via oxidative stress response. Oncotarget 7(45):73147–73159 ArticlePubMedPubMed Central Google Scholar
Fitter S, Dewar AL, Kostakis P, To LB, Hughes TP, Roberts MM et al (2008) Long-term imatinib therapy promotes bone formation in CML patients. Blood 111(5):2538–2547 ArticleCASPubMed Google Scholar
Spaner DE (2012) Oral high-dose glucocorticoids and ofatumumab in fludarabine-resistant chronic lymphocytic leukemia. Leukemia 26(5):1144–1145 ArticleCASPubMed Google Scholar
Wallace AM, Tucker P, Williams DM, Hughes IA, Ahmed SF (2003) Short-term effects of prednisolone and dexamethasone on circulating concentrations of leptin and sex hormone-binding globulin in children being treated for acute lymphoblastic leukaemia. Clin Endocrinol (Oxf) 58(6):770–776 ArticleCAS Google Scholar
Avramis VI, Tiwari PN (2006) Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int J Nanomed 1(3):241–254 CAS Google Scholar
Ehsanipour EA, Sheng X, Behan JW, Wang X, Butturini A, Avramis VI et al (2013) Adipocytes cause leukemia cell resistance to L-asparaginase via release of glutamine. Cancer Res 30–2998(10):7398 Google Scholar
Mittelman SD, Orgel E (2018) Adipocyte metabolism of the chemotherapy daunorubicin. Oncoscience 5(5–6):146 PubMedPubMed Central Google Scholar
Ye H, Adane B, Khan N, Ashton JM, Balys M, Stevens BM et al (2015) Adipose tissue functions as a reservoir for leukemia stem cells and confers chemo-resistance. Am Soc Hematol 6:845 Google Scholar
Spindler TJ, Tseng AW, Zhou X, Adams GB (2013) Adipocytic cells augment the support of primitive hematopoietic cells in vitro but have no effect in the bone marrow niche under homeostatic conditions. Stem Cells Dev 23(4):434–441 ArticleCASPubMedPubMed Central Google Scholar
Corre J, Planat-Benard V, Corberand JX, Pénicaud L, Casteilla L, Laharrague P (2004) Human bone marrow adipocytes support complete myeloid and lymphoid differentiation from human CD34+ cells. Br J Haematol 127(3):344–347 ArticlePubMed Google Scholar
Glettig DL, Kaplan DL (2013) Extending human hematopoietic stem cell survival in vitro with adipocytes. Biores Open Access 2(3):179–185 ArticleCASPubMedPubMed Central Google Scholar
Shafat MS, Gnaneswaran B, Bowles KM, Rushworth SA (2017) The bone marrow microenvironment–home of the leukemic blasts. Blood Rev 31(5):277–286 ArticlePubMed Google Scholar
van Zoelen EJ, Duarte I, Hendriks JM, van der Woning SP (2016) TGFβ-induced switch from adipogenic to osteogenic differentiation of human mesenchymal stem cells: identification of drug targets for prevention of fat cell differentiation. Stem Cell Res Ther 7(1):123 ArticleCASPubMedPubMed Central Google Scholar