Proton therapy posterior beam approach with pencil beam scanning for esophageal cancer (original) (raw)

Abstract

Purpose

The aim of this study is to present the dosimetry, feasibility, and preliminary clinical results of a novel pencil beam scanning (PBS) posterior beam technique of proton treatment for esophageal cancer in the setting of trimodality therapy.

Methods

From February 2014 to June 2015, 13 patients with locally advanced esophageal cancer (T3-4N0-2M0; 11 adenocarcinoma, 2 squamous cell carcinoma) were treated with trimodality therapy (neoadjuvant chemoradiation followed by esophagectomy). Eight patients were treated with uniform scanning (US) and 5 patients were treated with a single posterior–anterior (PA) beam PBS technique with volumetric rescanning for motion mitigation. Comparison planning with PBS was performed using three plans: AP/PA beam arrangement; PA plus left posterior oblique (LPO) beams, and a single PA beam. Patient outcomes, including pathologic response and toxicity, were evaluated.

Results

All 13 patients completed chemoradiation to 50.4 Gy (relative biological effectiveness, RBE) and 12 patients underwent surgery. All 12 surgical patients had an R0 resection and pathologic complete response was seen in 25 %. Compared with AP/PA plans, PA plans have a lower mean heart (14.10 vs. 24.49 Gy, P < 0.01), mean stomach (22.95 vs. 31.33 Gy, P = 0.038), and mean liver dose (3.79 vs. 5.75 Gy, P = 0.004). Compared to the PA/LPO plan, the PA plan reduced the lung dose: mean lung dose (4.96 vs. 7.15 Gy, P = 0.020) and percentage volume of lung receiving 20 Gy (V20; 10 vs. 17 %, P < 0.01).

Conclusion

Proton therapy with a single PA beam PBS technique for preoperative treatment of esophageal cancer appears safe and feasible.

Zusammenfassung

Ziel

Wir stellen die Vergleichsdosimetrie, Realisierbarkeit und die vorläufigen klinischen Ergebnisse einer neuen Pencil-Beam-Scanning(-PBS)/Posterior-Beam-Methode innerhalb der Protonentherapie für Speiseröhrenkrebs im Setting einer trimodalen Therapie vor.

Methoden

Von Februar 2014 bis Juni 2015 erhielten 13 Patienten mit lokal fortgeschrittenem Ösophaguskarzinom (T3-4N0-2M0, 11 Adenokarzinome, 2 Plattenepithelkarzinome) eine trimodale Therapie (neoadjuvante Radiochemotherapie, gefolgt von einer Ösophagektomie). Insgesamt 8 Patienten wurden mit dem Uniform Scanning (US) sowie 5 Patienten mit einer Posterior-Anterior (PA)-PBS-Methode mit einzelnem Strahl und volumetrischem Rescanning zur Bewegungsminderung behandelt. Vergleichsplanung mit PBS wurde unter Nutzung dreier Pläne durchgeführt: AP/PA-Strahlenanordnung, PA plus Left-Posterior-Oblique-(LPO-)Strahlen und ein einzelner PA-Strahl. Patientenergebnisse, einschließlich pathologischer Reaktionen und Toxizität wurden evaluiert.

Ergebnisse

Alle 13 Patienten schlossen die Radiochemotherapie mit 50,4 Gy („relative biological effectiveness“, RBE) ab; 12 Patienten unterzogen sich einer Operation. Alle 12 operierten Patienten hatten eine R0-Resektion und 25 % davon eine pathologische Komplettremission. Verglichen mit den AP/PA-Plänen weisen PA-Pläne eine geringere mittlere Herzdosis (14,10 vs. 24,49 Gy; P < 0,01), eine geringere mittlere Magendosis (22,95 vs. 31,33 Gy; P = 0,038) und eine geringere mittlere Leberdosis (3,79 vs. 5,75 Gy; P = 0,004) auf. Verglichen mit dem PA/LPO-Plan reduzierte der PA-Plan die Lungendosis: mittlere Lungendosis (4,96 vs. 7,15 Gy; P = 0,020) und Lungenvolumen mit 20 Gy (V20; 10 % vs. 17 %; P < 0,01).

Schlussfolgerung

Die Protonentherapie mit der PBS-Methode mit einem einzelnen PA-Strahl für die präoperative Behandlung von Speiseröhrenkrebs scheint sicher und praktikabel zu sein.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. DeSantis CE, Lin CC, Mariotto AB et al (2014) Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 64:252–271
    Article PubMed Google Scholar
  2. Schweigert M, Dubecz A, Stein HJ (2013) Oesophageal cancer – an overview. Nat Rev Gastroenterol Hepatol 10:230–244
    Article CAS PubMed Google Scholar
  3. Zacherl J (2014) The current evidence in support of multimodal treatment of locally advanced, potentially resectableesophageal cancer. Dig Dis 32:171–175
    Article PubMed Google Scholar
  4. Shapiro J, van Lanschot JJ, Hulshof MC (2015) Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial. Lancet Oncol 16:1090–1098
    Article PubMed Google Scholar
  5. May KS, Yang GY, Khushalani NI (2011) The role of radiation in the perioperative treatment of esophagogastric cancer. Curr Treat Options Oncol 12:61–71
    Article PubMed Google Scholar
  6. Lloyd S, Chang BW (2014) Current strategies in chemoradiation for esophageal cancer. J Gastrointest Oncol 5:156–165
    PubMed PubMed Central Google Scholar
  7. Ishikawa H, Hashimoto T, Moriwaki T (2015) Proton beam therapy combined with concurrent chemotherapy for esophageal cancer. Anticancer Res 35(3):1757–1762
    PubMed Google Scholar
  8. Lin SH, Komaki R, Liao Z (2012) Proton beam therapy and concurrent chemotherapy for esophageal cancer. Int J Radiat Oncol Biol Phys 83:e345–e351
    Article PubMed PubMed Central Google Scholar
  9. Ling TC, Slater JM, Nookala P (2014) Analysis of Intensity-Modulated Radiation Therapy (IMRT), proton and 3D Conformal Radiotherapy (3D-CRT) for reducing perioperative cardiopulmonary complications in esophageal cancer patients. Cancers (Basel) 6:2356–2368
    Article Google Scholar
  10. Grassberger C, Dowdell S, Sharp G et al (2015) Motion mitigation for lung cancer patients treated with active scanning proton therapy. Med Phys 42:2462–2469
    Article PubMed PubMed Central Google Scholar
  11. Zhang Y, Knopf AC, Weber DC et al (2015) Improving 4D plan quality for PBS-based liver tumour treatments by combining online image guided beam gating with rescanning. Phys Med Biol 60:8141–8159
    Article CAS PubMed Google Scholar
  12. Mandard AM, Dalibard F, Mandard JC et al (1994) Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 73:2680–2686
    Article CAS PubMed Google Scholar
  13. Shridhar R, Almhanna K, Meredith KL et al (2013) Radiation therapy and esophageal cancer. Cancer Control 20:97–110
    PubMed Google Scholar
  14. Isacsson U, Lennernäs B, Grusell E et al (1998) Comparative treatment planning between proton and x‑ray therapy in esophageal cancer. Int J Radiat Oncol Biol Phys 41:441–450
    Article CAS PubMed Google Scholar
  15. Lin SH, Komaki R, Liao Z et al (2012) Proton beam therapy and concurrent chemotherapy for esophageal cancer. Int J Radiat Oncol Biol Phys 83:e345–e351
    Article PubMed PubMed Central Google Scholar
  16. Kordes S, van Berge Henegouwen MI, Hulshof MC et al (2014) Preoperative chemoradiation therapy in combination with panitumumab for patients with respectable esophageal cancer: the PACT study. Int J Radiat Oncol Biol Phys 90:190–196
    Article CAS PubMed Google Scholar
  17. Palma DA, Senan S, Tsujino K et al (2013) Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys 85:444–450
    Article PubMed Google Scholar
  18. Shaikh T, Churilla TM, Monpara P et al (2016) Risk of radiation pneumonitis in patients receiving taxane-based tri-modality therapy for locally advanced esophageal cancer. Pract Radiat Oncol. doi:10.1016/j.prro.2016.02.004
    Google Scholar
  19. Beukema JC, van Luijk P, Widder J et al (2015) Is cardiac toxicity a relevant issue in the radiation treatment of esophageal cancer? Radiother Oncol 114:85–90
    Article PubMed Google Scholar
  20. Kavanagh BD, Pan CC, Dawson LA et al (2010) Radiation dose-volume effects in the stomach and small bowel. Int J Radiat Oncol Biol Phys 76:S101–S107
    Article PubMed Google Scholar
  21. Pan CC, Kavanagh BD, Dawson LA et al (2010) Radiation-associated liver injury. Int J Radiat Oncol Biol Phys 76:S94–S100
    Article PubMed PubMed Central Google Scholar
  22. Wu VW, Sham JS, Kwong DL (2004) Inverse planning in three-dimensional conformal and intensity-modulated radiotherapy of mid-thoracic oesophageal cancer. Br J Radiol 77:568–572
    Article CAS PubMed Google Scholar

Download references

Acknowledgements

The authors would like to thank Tony Wong for helping to finish this work.

Author information

Authors and Affiliations

  1. Department of Medical Oncology, Cancer Center, Shengjing Hospital of China Medical University, 39 Huaxiang Road, 110022, Shenyang, China
    Yue-Can Zeng
  2. Department of Radiation Oncology, University of Washington Medical Center, 1959 NE Pacific Street, Campus Box 356043, 98195, Seattle, WA, USA
    Yue-Can Zeng, Shilpa Vyas, Stephen R. Bowen, Smith Apisarnthanarax & Jing Zeng MD
  3. Seattle Cancer Care Alliance Proton Therapy Center, 1570 N 115th St., 98133, Seattle, WA, USA
    Quang Dang & Lindsay Schultz
  4. Department of Radiology, University of Washington Medical Center, 1959 NE Pacific Street, 98195, Seattle, WA, USA
    Stephen R. Bowen
  5. Department of Medical Oncology, University of Washington Medical Center, 1959 NE Pacific Street, 98195, Seattle, WA, USA
    Veena Shankaran
  6. Department of Surgery, Division of Cardiothoracic Surgery, University of Washington Medical Center, 1959 NE Pacific Street, 98195, Seattle, WA, USA
    Farhood Farjah
  7. Department of Surgery, Surgical Outcomes Research Center, University of Washington Medical Center, 1959 NE Pacific Street, 98195, Seattle, WA, USA
    Farhood Farjah
  8. Department of Surgery, University of Washington Medical Center, 1959 NE Pacific Street, 98195, Seattle, WA, USA
    Brant K. Oelschlager

Authors

  1. Yue-Can Zeng
    You can also search for this author inPubMed Google Scholar
  2. Shilpa Vyas
    You can also search for this author inPubMed Google Scholar
  3. Quang Dang
    You can also search for this author inPubMed Google Scholar
  4. Lindsay Schultz
    You can also search for this author inPubMed Google Scholar
  5. Stephen R. Bowen
    You can also search for this author inPubMed Google Scholar
  6. Veena Shankaran
    You can also search for this author inPubMed Google Scholar
  7. Farhood Farjah
    You can also search for this author inPubMed Google Scholar
  8. Brant K. Oelschlager
    You can also search for this author inPubMed Google Scholar
  9. Smith Apisarnthanarax
    You can also search for this author inPubMed Google Scholar
  10. Jing Zeng MD
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toJing Zeng MD.

Ethics declarations

Conflict of interest

Y.-C. Zeng, S. Vyas, Q. Dang, L. Schultz, S.R. Bowen, V. Shankaran, F. Farjah, B.K. Oelschlager, S. Apisarnthanarax, and J. Zeng state that there are no conflicts of interest.

Ethical standards

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Electronic Supplementary Material

Table 1:

Dosimetric comparison between groups for mid-esophageal tumors

Rights and permissions

About this article

Cite this article

Zeng, YC., Vyas, S., Dang, Q. et al. Proton therapy posterior beam approach with pencil beam scanning for esophageal cancer.Strahlenther Onkol 192, 913–921 (2016). https://doi.org/10.1007/s00066-016-1034-4

Download citation

Keywords

Schlüsselwörter