BRCA1 and p53: compensatory roles in DNA repair (original) (raw)
Ford D, et al (1994) Risks of cancer in BRCA1 mutation carriers. Lancet 343:692–695 CASPubMed Google Scholar
Easton DF, Ford D, Bishop DT (1995) Breast and ovarian cancer incidence in BRCA1 mutation carriers. Am J Hum Genet 56:65–71 Google Scholar
Chappuis PO, et al (2000) Germline BRCA1/2 mutations and p27 (Kip1) protein levels independently predict outcome after breast cancer. J Clin Oncol 18:4045–4052 CAS Google Scholar
Stoppa-Lyonnet D, et al (2000) Familial invasive breast cancers: worse outcome related to BRCA1 mutations. J Clin Oncol 18:4053–4059 CAS Google Scholar
Hedenfalk I, et al (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344:539–548 CASPubMed Google Scholar
Lakhani SR, et al (2002) The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol 20:2310–2318 CAS Google Scholar
Miyamoto K, et al (2002) Promoter hypermethylation and post-transcriptional mechanisms for reduced BRCA1 immunoreactivity in sporadic human breast cancers. Jpn J Clin Oncol 32:79–84 ArticlePubMed Google Scholar
Esteller M, et al (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92:564–584 CASPubMed Google Scholar
Bianco T, et al (2000) Tumour-specific distribution of BRCA1 promoter region methylation supports a pathogenetic role in breast and ovarian cancer. Carcinogenesis 21:147–184 CAS Google Scholar
Rice JC, et al (2000) Methylation of the BRCA1 promoter is associated with decreased BRCA1 mRNA levels in clinical breast cancer specimens. Carcinogenesis 21:1761–1784 CAS Google Scholar
Schuyer M, Berns EM (1999) Is TP53 dysfunction required for BRCA1-associated carcinogenesis? Mol Cell Endocrinol 155:143–152
Crook T, et al (1998) p53 mutation with frequent novel condons but not a mutator phenotype in BRCA1- and BRCA2-associated breast tumours. Oncogene 17:1681–1689 CAS Google Scholar
Hakem R, et al (1997) Partial rescue of Brca1 (5–6) early embryonic lethality by p53 or p21 null mutation. Nat Genet 16:298–302 CAS Google Scholar
Hakem R, et al (1996) The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85:1009–1023 CASPubMed Google Scholar
MacLachlan TK, et al (2000) BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J Biol Chem 275:2777–2785 CASPubMed Google Scholar
Arizti P, et al (2000) Tumor suppressor p53 is required to modulate BRCA1 expression. Mol Cell Biol 20:7450–7459 CAS Google Scholar
Brodie S, et al (2001) Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Oncogene 20:7514–7523 CAS Google Scholar
Deng C, Brodie S (2001) Knockout mouse models and mammary tumorigenesis. Semin Cancer Biol 11:387–394 CAS Google Scholar
Ford JM, Hanawalt PC (1995) Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc Natl Acad Sci U S A 92:8876–8880 CAS Google Scholar
Ford JM, Hanawalt PC (1997) Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. J Biol Chem 272:28073–28080 CAS Google Scholar
Lloyd DR, Hanawalt PC (2000) p53-dependent global genomic repair of benzo[a]pyrene-7:8-diol-9:10-epoxide adducts in human cells. Cancer Res 60:517–521 CAS Google Scholar
Ford J, Hanawalt P (1997) Role of DNA excision repair gene defects in the etiology of cancer. Curr Top Microbiol Immunol 221:47–70 CAS Google Scholar
Wood RD (1999) DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie 81:39–44
Greenblatt MS, et al (2001) TP53 mutations in breast cancer associated with BRCA1 or BRCA2 germ-line mutations: distinctive spectrum and structural distribution. Cancer Res 61:4092–4097 CAS Google Scholar
Motykiewicz G, et al (2001) Immunoperoxidase detection of polycyclic aromatic hydrocarbon-DNA adducts in breast tissue sections. Cancer Detect Prev 25:328–335 CAS Google Scholar
Xiong P, et al (2001) Sensitivity to benzo(a)pyrene diol-epoxide associated with risk of breast cancer in young women and modulation by glutathione S-transferase polymorphisms: a case-control study. Cancer Res 61:8465–8469 CAS Google Scholar
Kumar R, et al (2003) Single nucleotide polymorphisms in the XPG gene: determination of role in DNA repair and breast cancer risk. Int J Cancer 103:671–675 CAS Google Scholar
Tang D, et al (2002) Polymorphisms in the DNA repair enzyme XPD are associated with increased levels of PAH-DNA adducts in a case-control study of breast cancer. Breast Cancer Res Treat 75:159–166 CAS Google Scholar
Takebayashi Y, et al (2001) Loss of heterozygosity of nucleotide excision repair factors in sporadic ovarian, colon and lung carcinomas: implication for their roles of carcinogenesis in human solid tumors. Cancer Lett 174:115–125 CAS Google Scholar
Miyashita H, et al (2001) Loss of heterozygosity of nucleotide excision repair factors in sporadic oral squamous cell carcinoma using microdissected tissue. Oncol Rep 8:1133–1138 CAS Google Scholar
Adimoolam S, Ford JM (2003) p53 and regulation of DNA damage recognition during nucleotide excision repair. DNA Repair (in press)
Kastan M, et al (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311 CASPubMed Google Scholar
Ford JM, Baron EL, Hanawalt PC (1998) Human fibroblasts expressing the human papillomavirus E6 gene are deficient in global genomic nucleotide excision repair and sensitive to ultraviolet irradiation. Cancer Res 58:599–603 CAS Google Scholar
Hwang BJ, et al (1999) Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci U S A 96:424–428 CAS Google Scholar
Smith ML, et al (2000) p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 20:3705–3714 CAS Google Scholar
Adimoolam S, Lin CX, Ford JM (2001) The p53-regulated cyclin-dependent kinase inhibitor, p21 (cip1, waf1, sdi1) is not required for global genomic and transcription-coupled nucleotide excision repair of UV-induced DNA photoproducts. J Biol Chem 276:25813–25822 CAS Google Scholar
Fitch ME, Cross IV, Ford JM (2003) p53 responsive nucleotide excision repair gene products p48 and XPC, but not p53, localize to sites of UV-irradiation induced DNA damage, in vivo. Carcinogenesis 24:843–850
Adimoolam S, Ford JM (2002) p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci USA 99:12985–12990 CAS Google Scholar
Wang X, et al (1995) p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet 10:188–195 CAS Google Scholar
Wang X, et al (1996) The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev 10:1219–1232 CAS Google Scholar
Hartman A, Ford J (2002) BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nat Genet 32:180–184 CAS Google Scholar
Harkin D, et al (1999) Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 97:575–586 CASPubMed Google Scholar
Zheng L, et al (2000) Sequence-specific transcriptional corepressor function for BRCA1 through a novel zinc finger protein, ZBRK1. Mol Cell 6:757–768 CAS Google Scholar
Li S, et al (2000) Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 406:210–215
Jin S, et al (2000) BRCA1 activation of the GADD45 promoter. Oncogene 19:4050–4057 CAS Google Scholar
Takimoto R, et al (2002) BRCA1 transcriptionally regulates damaged DNA binding protein (DDB2) in the DNA repair response following UV-irradiation. Cancer Biol Ther 1:177–186 CAS Google Scholar
Abbott DW, et al (1999) BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair. J Biol Chem 274:18808–18812 CASPubMed Google Scholar
Pierce LJ, et al (2000) Effect of radiotherapy after breast-conserving treatment in women with breast cancer and germline BRCA1/2 mutations. J Clin Oncol 18:3360–3369 CAS Google Scholar
Gowen LC, et al (1998) BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science 281:1009–1012
Le Page F, et al (2000) BRCA1 and BRCA2 are necessary for the transcription-coupled repair of the oxidative 8-oxoguanine lesion in human cells. Cancer Res 60:5548–5552 PubMed Google Scholar
Harkin DP, et al (1999) Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 97:575–586 CASPubMed Google Scholar
Hashizume R, et al (2001) The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem 276:14537–14540 CAS Google Scholar
Xu B, Kim S, Kastan MB (2001) Involvement of Brca1 in S-phase and G (2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 21:3445–3450 CAS Google Scholar
Ruffner H, et al (2001) Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci U S A 98:5134–5139 CAS Google Scholar
Cortez D, et al (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286:1162–1166
Wang Y, et al (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14:927–939 CAS Google Scholar
Bhattacharyya A, et al (2000) The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem 275:23899–23903 CAS Google Scholar
Lee J, et al (2000) hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404:201–204
Zhong Q, et al (1999) Association of BRCA1 with the hRad50-hMre11–p95 complex and the DNA damage response. Science 285:747–750
Garcia-Higuera I, et al (2001) Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 7:249–262 CASPubMed Google Scholar
Zhen W, et al (1993) Deficient gene specific repair of cisplatin-induced lesions in xeroderma pigmentosum and Fanconi's anemia cell lines. Carcinogenesis 14:919–924 CAS Google Scholar
Moynahan M, et al (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4:511–518 CASPubMed Google Scholar
Moynahan ME, Cui TY, Jasin M (2001) Homology-directed DNA repair, mitomycin-C resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res 61:4842–4850 CAS Google Scholar
Scully R, et al (1999) Genetic analysis of BRCA1 function in a defined tumor cell line. Mol Cell 4:1093–1099 CAS Google Scholar
Cantor S, et al (2001) BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105:149–160 CAS Google Scholar
Wang H, et al (2001) Nonhomologous end-joining of ionizing radiation-induced DNA double-stranded breaks in human tumor cells deficient in BRCA1 or BRCA2. Cancer Res 61:270–277 CAS Google Scholar
Zhong Q, et al (2002) Deficient nonhomologous end-joining activity in cell-free extracts from Brca1-null fibroblasts. Cancer Res 62:3966–3970 CAS Google Scholar
Wang H, et al (2001) Nonhomologous end-joining of ionizing radiation-induced DNA double-stranded breaks in human tumor cells deficient in BRCA1 or BRCA2. Cancer Res 61:270–277 CAS Google Scholar
Merel P, et al (2002) Absence of major defects in non-homologous DNA end joining in human breast cancer cell lines. Oncogene 21:5654–5659 CAS Google Scholar
Snouwaert J, et al (1999) BRCA1 deficient embryonic stem cells display a decreased homologous recombination frequency and an increased frequency of non-homologous recombination that is corrected by expression of a brca1 transgene. Oncogene 18:7900–7907 CAS Google Scholar
Yu X, et al (1998) The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem 273:25388–25392 CAS Google Scholar
Yu X, Baer R (2000) Nuclear localization and cell cycle-specific expression of CtIP, a protein that associates with the BRCA1 tumor suppressor. J Biol Chem 275:18541–18549 CASPubMed Google Scholar
Li S, et al (1999) Binding of CtIP to the BRCT repeats of BRCA1 involved in the transcription regulation of p21 is disrupted upon DNA damage. J Biol Chem 274:11334–11338 CAS Google Scholar
Zheng L, et al (2001) BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. Proc Natl Acad Sci USA 98:9587–9592 CAS Google Scholar
Ganesan S, et al (2002) BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 111:393–405 CAS Google Scholar
Aunoble B, Bernard-Gallon D, Bignon YJ (2001) Regulation of BRCA1 and BRCA2 transcript in response to cisplatin, adriamycin, taxol and ionising radiation is correlated to p53 functional status in ovarian cancer cell lines. Oncol Rep 8:663–668 CAS Google Scholar
Husain A, et al (1998) BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum (II). Cancer Res 58:1120–1123 CAS Google Scholar
Moynahan ME, Cui TY, Jasin M (2001) Homology-directed DNA repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res 61:4842–4850 CAS Google Scholar