Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: the interaction of ecology, shock and risk factors (original) (raw)

Abstract

Purpose

As per 2005 American Thoracic Society and Infectious Disease Society of America (ATS/IDSA) guidelines for managing hospital-acquired pneumonia, patients with early-onset pneumonia and without risk factors do not need to be treated for potentially resistant microorganisms (PRM).

Methods

This was a secondary analysis of a prospective, observational, cohort, multicentre study conducted in 27 ICUs from nine European countries.

Results

From a total of 689 patients with nosocomial pneumonia who required mechanical ventilation, 485 patients with confirmed etiology and antibiotic susceptibility were further analysed. Of these patients, 152 (31.3 %) were allocated to group 1 with early-onset pneumonia and no risk factors for PRM acquisition, and 333 (68.7 %) were classified into group 2 with early-onset pneumonia with risk factors for PRM or late-onset pneumonia. Group 2 patients were older and had more chronic renal failure and more severe illness (SAPS II score, 44.6 ± 16.5 vs. 47.4 ± 17.8, p = 0.04) than group 1 patients. Trauma patients were more frequent and surgical patients less frequent in group 1 than in group 2 (p < 0.01). In group 1, 77 patients (50.7 %) had PRM in spite of the absence of classic risk factors recognised by the current guidelines. A logistic regression analysis identified that presence of severe sepsis/septic shock (OR = 3.7, 95 % CI 1.5–8.9) and pneumonia developed in centres with greater than 25 % prevalence of PRM (OR = 11.3, 95 % CI 2.1–59.3) were independently associated with PRM in group 1 patients.

Conclusions

In patients admitted to ICUs with a prevalence of PRM greater than 25 % or with severe sepsis/septic shock, empiric therapy for group 1 nosocomial pneumonia requiring mechanical ventilation should also include agents likely to be effective for PRM pathogens.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. American Thoracic Society (2005) Guidelines for the management of adults with hospital-acquired pneumonia, ventilator-associated pneumonia, and healthcare-associated pneumonia. Am J Respir Crit Care Med 17:388–416
    Google Scholar
  2. Rello J, Gallego M, Mariscal D, Soñora R, Valles J (1997) The value of routine microbial investigation in ventilator-associated pneumonia. Am J Respir Crit Care Med 156:196–200
    PubMed CAS Google Scholar
  3. Alvarez-Lerma F, ICU-Acquired Pneumonia Study Group (1996) Modification of empiric antibiotic treatment in patients with pneumonia acquired in the intensive care unit. Intensive Care Med 22:387–394
    Article PubMed CAS Google Scholar
  4. Luna CM, Vujacich P, Niederman MS, Vay C, Gherardi C, Matera J, Jolly EC (1997) Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 111:676–685
    Article PubMed CAS Google Scholar
  5. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, Moreno R, Lipman J, Gomersall C, Sakr Y, Reinhart K, EPIC II Group of Investigators (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329
    Article PubMed CAS Google Scholar
  6. Koulenti D, Lisboa T, Brun-Buisson C, Krueger W, Macor A, Sole-Violan J, Diaz E, Topeli A, DeWaele J, Carneiro A, Martin-Loeches I, Armaganidis A, Rello J, EU-VAP/CAP Study Group (2009) Spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units. Crit Care Med 37:2360–2368
    Article PubMed Google Scholar
  7. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP et al (2007) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Epidemiology 18:800–804
    Article Google Scholar
  8. McCabe JR, Jackson GG (1962) Gram-negative bacteraemia I: etiology and ecology. Arch Intern Med 110:847–855
    Article Google Scholar
  9. Le-Gall JR, Lemeshow S, Saulnier F (1993) A new simplified physiology score (SAPS II) based on a European/North American multicentre study. JAMA 270:2957–296314
    Article PubMed CAS Google Scholar
  10. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874
    Article Google Scholar
  11. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart CK, Suter PM, Thijs LG (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med 22:707–710
    Article PubMed CAS Google Scholar
  12. Pugin J, Auckenthaler R, Mili N, Janssens JP, Lew PD, Suter PM (1991) Diagnosis of ventilator–associated pneumonia by bacteriologic analysis of bronchoscopic and non bronchoscopic ‘blind’ bronchoalveolar lavage fluid. Am Rev Respi Dis 143:1121–1129
    CAS Google Scholar
  13. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874
    Article Google Scholar
  14. Chastre J, Fagon JY (2002) Ventilator-associated pneumonia. Am J Respir Crit Care Med 165:867–903
    PubMed Google Scholar
  15. Ferrer M, Liapikou A, Valencia M, Esperatti M, Theessen A, Antonio Martinez J, Mensa J, Torres A (2010) Validation of the American Thoracic Society-Infectious Diseases Society of America guidelines for hospital-acquired pneumonia in the intensive care unit. Clin Infect Dis 50:945–952
    Article PubMed Google Scholar
  16. Heyland DK, Dodek P, Muscedere J, Day A, Cook D, Canadian Critical Care Trials Group (2008) Randomized trial of combination versus monotherapy for the empiric treatment of suspected ventilator-associated pneumonia. Crit Care Med 36:737–744
    Article PubMed Google Scholar
  17. Rello J, Torres A (1996) Microbial causes of ventilator-associated pneumonia. Semin Respir Infect 11:24–31
    PubMed CAS Google Scholar
  18. Rello J, Ausina V, Ricart M, Puzo C, Quintana E, Net A, Prats G (1994) Risk factors for infection by Pseudomonas aeruginosa in patients with ventilator-associated pneumonia. Intensive Care Med 20:193–198
    Article PubMed CAS Google Scholar
  19. Sirvent JM, Torres A, El-Ebiary M, Castro P, de Batlle J, Bonet A (1997) Protective effect of intravenously administered cefuroxime against nosocomial pneumonia in patients with structural coma. Am J Respir Crit Care Med 155:1729–1734
    PubMed CAS Google Scholar
  20. Nseir S, Blazejewski C, Lubret R, Wallet F, Courcol R, Durocher A (2011) Risk of acquiring multidrug-resistant Gram-negative bacilli from prior room occupants in the intensive care unit. Clin Microbiol Infect 17:1201–1208
    Article PubMed CAS Google Scholar
  21. Grundmann H, Bärwolff S, Tami A, Behnke M, Schwab F, Geffers C, Halle E, Göbel UB, Schiller R, Jonas D, Klare I, Weist K, Witte W, Beck-Beilecke K, Schumacher M, Rüden H, Gastmeier P (2005) How many infections are caused by patient-to-patient transmission in intensive care units? Crit Care Med 33:946–951
    Article PubMed Google Scholar
  22. Rello J, Sa-Borges M, Correa H, Leal SR, Baraibar J (1999) Variations in etiology of ventilator-associated pneumonia across four treatment sites: implications for antimicrobial prescribing practices. Am J Respir Crit Care Med 160:608–613
    PubMed CAS Google Scholar
  23. Namias N, Samiian L, Nino D, Shirazi E, O’Neill K, Kett DH, Ginzburg E, McKenney MG, Sleeman D, Cohn SM (2000) Incidence and susceptibility of pathogenic bacteria vary between ICU within a single hospital: implications for empiric antibiotic strategies. J Trauma 49:638–645
    Article PubMed CAS Google Scholar
  24. Rello J, Ulldemolins M, Lisboa T, Koulenti D, Mañez R, Martin-Loeches I, De Waele JJ, Putensen C, Guven M, Deja M, Diaz E, EU-VAP/CAP Study Group (2011) Determinants of prescription and choice of empirical therapy for hospital-acquired and ventilator-associated pneumonia. Eur Respir J 37:1332–1339
    Article PubMed CAS Google Scholar
  25. Depuydt PO, Vandijck DM, Bekaert MA, Decruyenaere JM, Blot SI, Vogelaers DP, Benoit DD (2008) Determinants and impact of multidrug antibiotic resistance in pathogens causing ventilator-associated-pneumonia. Crit Care 12:R142
    Article PubMed Google Scholar
  26. Tseng CC, Liu SF, Wang CC, Tu ML, Chung YH, Lin MC, Fang WF (2012) Impact of clinical severity index, infective pathogens, and initial empiric antibiotic use on hospital mortality in patients with ventilator-associated pneumonia. Am J Infect Control 40(7):648–652
    Article PubMed Google Scholar
  27. Damas P, Layios N, Seidel L, Nys M, Melin P, Ledoux D (2011) Severity of ICU-acquired pneumonia according to infectious microorganisms. Intensive Care Med 37:1128–1135
    Article PubMed Google Scholar
  28. Kumar A, Safdar N, Kethireddy S, Chateau D (2010) A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med 38:1651–1664
    Article PubMed CAS Google Scholar
  29. Kollef KE, Schramm GE, Wills AR, Reichley RM, Micek ST, Kollef MH (2008) Predictors of 30-day mortality and hospital costs in patients with ventilator-associated pneumonia attributed to potentially antibiotic-resistant gram-negative bacteria. Chest 134:281–287
    Article PubMed CAS Google Scholar
  30. Lisboa T, Diaz E, Sa-Borges M, Socias A, Sole-Violan J, Rodríguez A, Rello J (2008) The ventilator-associated pneumonia PIRO score: a tool for predicting ICU mortality and health-care resources use in ventilator-associated pneumonia. Chest 134:1208–1216
    Article PubMed Google Scholar
  31. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34:1589–1596
    Article PubMed Google Scholar

Download references

Acknowledgments

Supported by AGAUR 2005/SGR/920, CibeRes 06/06/0036.

Conflicts of interest

The authors declare no conflict of interest regarding the present manuscript.

Author information

Authors and Affiliations

  1. Critical Care Centre, Coporació Sanitaria Parc Tauli, Sabadell, Spain
    Ignacio Martin-Loeches
  2. Institut Universitari UAB, Barcelona, Spain
    Ignacio Martin-Loeches
  3. Critical Care Department, Mater Misericordiae University Hospital, Dublin, Ireland
    Ignacio Martin-Loeches & Brian Marsh
  4. Department of Anesthesiology and Critical Care Medicine, Charité Medical Center, Campus Virchow-Clinic, Augustenburger Platz 1, 13353, Berlin, Germany
    Maria Deja
  5. Critical Care Department, University Hospital Attikon, Rimini 1, 12462, Haidari, Athens, Greece
    Despoina Koulenti
  6. Department of Critical Care Medicine, University Hospital ATTIKON, Medical School, University of Athens, Athens, Greece
    George Dimopoulos
  7. Pneumology Department, Hospital Clinic, Barcelona, Spain
    Antonio Torres
  8. Department of Medicine, Winthrop-University Hospital, 222 Station Plaza N., Suite 509, Mineola, NY, 11501, USA
    Michael S. Niederman
  9. Critical Care Department, Hospital Vall d’Hebron, Barcelona, Spain
    Jordi Rello
  10. Vall d’ Hebron Research Institute (VHIR), Barcelona, Spain
    Jordi Rello
  11. Universitat Autónoma de Barcelona, Barcelona, Spain
    Jordi Rello
  12. CIBERES, Barcelona, Spain
    Ignacio Martin-Loeches, Antonio Torres & Jordi Rello

Authors

  1. Ignacio Martin-Loeches
  2. Maria Deja
  3. Despoina Koulenti
  4. George Dimopoulos
  5. Brian Marsh
  6. Antonio Torres
  7. Michael S. Niederman
  8. Jordi Rello

Consortia

EU-VAP Study Investigators

Corresponding author

Correspondence toJordi Rello.

Additional information

EU-VAP Study Investigators working group are listed in the "Appendix".

This article is discussed in the editorial available at: doi:10.1007/s00134-012-2811-x.

EU-VAP/CAP Study was endorsed by the European Critical Care Research Network (ECCRN) of the European Society of Intensive Care Medicine (ESICM).

Appendix: EU-VAP/CAP Study

Appendix: EU-VAP/CAP Study

Principal Investigator: Jordi Rello

Study Co-ordinator: Despoina Koulenti

Βelgium

National Co-ordinator (NC): Jan DeWaele

    1. Ghent Univ. Hospital, Ghent, Belgium: Jan DeWaele and Stijn Blot
    1. St Jan Hospital, Brugges, Belgium: Marc Nauwynck

France

NC: Christian Brun-Buisson

    1. Henri-Mondor Univ. Hospital, Paris, France: Christian Brun-Buisson
    1. Raymond Poincaré Univ. Hospital, Garches, France: Djilali Annane
    1. Nord Univ. Hospital, Marseille, France: Claude Martin
    1. Sainte-Marguerite Univ. Hospital, Marseille, France: Laurent Papazian
    1. Bichat-Claude-Bernard Univ. Hospital, Paris, France: Bernard Regnier

Germany

NC: Wolfgang Krueger

    1. Tuebingen Univ. Hospital, Tuebingen, Germany: Wolfgang Krueger
    1. Bonn Univ. Hospital, Bonn, Germany: Christian Putensen and Hermann Wrigge
    1. Charite Univ. Hospital, Berlin, Germany: Maria Deja

Greece

NC: Despoina Koulenti and Apostolos Armaganidis

    1. Attikon Univ. Hospital, Athens, Greece: Apostolos Armaganidis
    1. Sotiria General Hospital, Athens, Greece: George Dimopoulos
    1. KAT Hospital, Athens, Greece: Pavlos Myrianthefs
    1. Larisa General Hospital, Larisa, Greece: Apostolos Komnos

Italy

NC: Antonio Macor (Amedeo di Savoia Hospital, Torino, Italy)

    1. Maria Vittoria Hospital, Torino, Italy: Emilpaolo Manno
    1. Cardinal Massaia Hospital, Asti, Italy: Silvano Cardellino
    1. Mauriziano Umberto I Hospital, Torino, Italy: Giuseppe Spina

Ireland

NC: Ignacio Martin-Loeches

    1. Mater Misericordiae Univ. Hospital, Dublin, Ireland: Ignacio Martin-Loeches & Brian Marsh

Portugal

NC: Antonio Carneiro

    1. Santo Antonio Hospital, Porto, Portugal: Antonio Carneiro

Spain

NC: Jordi Rello

    1. Joan XXIII Univ. Hospital, Tarragona, Spain (UCI1): Jordi Rello
    1. Joan XXIII Univ. Hospital, Tarragona, Spain (UCI2): Emili Diaz
    1. Bellvitge Univ. Hospital, Barcelona, Spain: Rafael Mañez
    1. Dr Negrin Univ. Hospital, Gran Canarias, Spain: Jordi Sole-Violan
    1. Virgen de Rocio Univ. Hospital, Seville, Spain (ICU1): Jose Garnacho-Montero
    1. Virgen de Rocio Univ. Hospital, Seville, Spain (ICU2): Rosario Amaya-Villar

Turkey

NC: Arzu Topeli

    1. Hacettepe Univ. Hospital, Ankara, Turkey: Arzu Topeli
    1. Erciyes Univ. Hospital, Kayseri, Turkey: Muhammet Guven

EU-VAP/CAP Study Group: Djilali Annane (Raymond Poincaré Univ. Hospital, Garches, France), Rosario Amaya-Villar (Virgen de Rocio Univ. Hospital, Seville, Spain), Apostolos Armaganidis (Attikon Univ. Hospital, Athens, Greece), Stijn Blot (Ghent Univ. Hospital, Ghent, Belgium), Christian Brun-Buisson (Henri-Mondor Univ. Hospital, Paris, France), Antonio Carneiro (Santo Antonio Hospital, Porto, Portugal), Maria Deja (Charite Univ. Hospital, Berlin, Germany), Jan DeWaele (Ghent Univ. Hospital, Ghent, Belgium), Emili Diaz (Joan XIII Univ. Hospital, Tarragona, Spain), George Dimopoulos (Attikon Univ. Hospital and Sotiria Hospital, Athens, Greece), Silvano Cardellino (Cardinal Massaia Hospital, Asti, Italy), Jose Garnacho-Montero (Virgen de Rocio Univ. Hospital, Seville, Spain), Muhammet Guven (Erciyes Univ. Hospital, Kayseri, Turkey), Apostolos Komnos (Larisa Hospital, Larisa, Greece), Despona Koulenti (Attikon Univ. Hospital, Athens, Greece and Rovira i Virgili University, Tarragona, Spain), Wolfgang Krueger (Tuebingen Univ. Hospital, Tuebingen, Germany and Constance Hospital, Constance, Germany), Thiago Lisboa (Joan XIII Univ. Hospital, Tarragona, Spain and CIBER Enfermedades Respiratorias), Antonio Macor (Amedeo di Savoia Hospital, Torino, Italy), Emilpaolo Manno (Maria Vittoria Hospital, Torino, Italy), Rafael Mañez (Bellvitge Univ. Hospital, Barcelona, Spain), Brian Marsh (Mater Misericordiae Univ. Hospital, Dublin, Ireland), Claude Martin (Nord Univ. Hospital, Marseille, France), Ignacio Martin-Loeches (Mater Misericordiae Univ. Hospital, Dublin, Ireland and Corporacio Sanitaria Parc Tauli, Sabadell, Spain), Pavlos Myrianthefs (KAT Hospital, Athens, Greece), Marc Nauwynck (St Jan Hospital, Brugges, Belgium), Laurent Papazian (Sainte-Marguerite Univ. Hospital, Marseille, France), Christian Putensen (Bonn Univ. Hospital, Bonn, Germany), Bernard Regnier (Claude Bernard Univ. Hospital, Paris, France), Jordi Rello (Joan XIII Univ. Hospital, Tarragona, Spain and Vall d’Hebron University Hospital, Spain), Jordi Sole-Violan (Dr Negrin Univ. Hospital, Gran Canarias, Spain), Giuseppe Spina (Mauriziano Umberto I Hospital, Torino, Italy), Arzu Topeli (Hacettepe Univ. Hospital, Ankara, Turkey), Hermann Wrigge (Bonn Univ. Hospital, Bonn, Germany).

Rights and permissions

About this article

Cite this article

Martin-Loeches, I., Deja, M., Koulenti, D. et al. Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: the interaction of ecology, shock and risk factors.Intensive Care Med 39, 672–681 (2013). https://doi.org/10.1007/s00134-012-2808-5

Download citation

Keywords