Utilization of DenseNet201 for diagnosis of breast abnormality (original) (raw)

References

  1. Breast cancer treatment. https://www.cancer.gov/types/breast/patient/breast-treatment-pdq#section/all?redirect=true. Accessed 5 Jan 2019
  2. Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)
    Article Google Scholar
  3. Hua, K.-L., Hsu, C.-H., Hidayati, S.C., Cheng, W.-H., Chen, Y.-J.: Computer-aided classification of lung nodules on computed tomography images via deep learning technique. OncoTargets Thera. 8, 2015–2022 (2015)
    Google Scholar
  4. Jalalian, A., Mashohor, S.B.T., Mahmud, H.R., Saripan, M.I.B., Rahman, A., Ramli, B., Karasfi, B.: Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin. Imaging 37(3), 420–426 (2013)
    Article Google Scholar
  5. Venkata Rao, R., Chen, P.: Abnormal breast detection in mammogram images by feed-forward neural network trained by Jaya algorithm. Fundamenta Informaticae 151(1–4), 191–211 (2017)
    MathSciNet Google Scholar
  6. Dhungel, N., Carneiro, G., Bradley, A.P.: Automated mass detection in mammograms using cascaded deep learning and random forests. In: 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8. IEEE (2015)
  7. Mordang, J.-J., Janssen, T., Bria, A., Kooi, T., Gubern-Mérida, A., Karssemeijer, N.: Automatic microcalcification detection in multi-vendor mammography using convolutional neural networks. In: International Workshop on Digital Mammography, pp. 35–42. Springer, Berlin (2016)
    Chapter Google Scholar
  8. Akselrod-Ballin, A., Karlinsky, L., Alpert, S., Hashoul, S., Ben-Ari, R., Barkan, E.: A CNN based method for automatic mass detection and classification in mammograms. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 7(3), 242–249 (2017)
    Article Google Scholar
  9. Avalos-Rivera, E.D., de J Pastrana-Palma, A.: Classifying microcalcifications on digital mammography using morphological descriptors and artificial neural network. In: Ciencias de la Informática y Desarrollos de Investigación (CACIDI), IEEE Congreso Argentino de, pp. 1–4. IEEE (2016)
  10. Pan, C., Chen, X., Wang, F.: Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling. J. Comput. Sci. 27, 57–68 (2018)
    Article Google Scholar
  11. Hang, W., Liu, Z., Hannun, A.: Glimpsenet: attentional methods for full-image mammogram diagnosis
  12. Wu, C., Liu, Y., Feng, D., Wang, F., Tu, P.: Femtosecond laser ablation power level identification based on the ablated spot image. Int. J. Adv. Manuf. Technol. 94(5–8), 2605–2612 (2018)
    Google Scholar
  13. Yang, L., Feng, D., Tu, P., Wang, F., Wu, C.: Pseudo-color enhancement and its segmentation for femtosecond laser spot image. Microw. Opt. Technol. Lett. 60(4), 854–865 (2018)
    Article Google Scholar
  14. Wang, F., Xu, A., Zeng, K., Chen, Z., Zhou, Y.: Research for billet limited weight cutting based on behavior stateflow. In: MATEC Web of Conferences, vol. 68, p. 02005. EDP Sciences (2016)
  15. Wang, S., Chen, Y.: Fruit category classification via an eight-layer convolutional neural network with parametric rectified linear unit and dropout technique. Multimed. Tools Appl. https://doi.org/10.1007/s11042-018-6661-6 (2018)
    Article Google Scholar
  16. Chen, Y., Zhang, Y., Yang, M., Lu, H., Wang, H., Liu, B., Phillips, P., Wang, S., Zhan, T.: Multiple sclerosis detection based on biorthogonal wavelet transform, rbf kernel principal component analysis, and logistic regression. IEEE Access 4, 7567–7576 (2016)
    Article Google Scholar
  17. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)
  18. Aytar, Y., Zisserman, A.: Tabula rasa: model transfer for object category detection. In 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2252–2259. IEEE (2011)
  19. Geng, M., Wang, Y., Xiang, T., Tian, Y.: Deep transfer learning for person re-identification. arXiv preprint arXiv:1611.05244 (2016)
  20. Shao, L., Zhu, F., Li, X.: Transfer learning for visual categorization: a survey. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 1019–1034 (2015)
    Article MathSciNet Google Scholar
  21. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 9 (2016)
    Article Google Scholar
  22. Samala, R.K., Chan, H.-P., Hadjiiski, L., Helvie, M.A., Wei, J., Cha, K.: Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med. Phys. 43(12), 6654–6666 (2016)
    Article Google Scholar
  23. Huynh, B.Q., Li, H., Giger, M.L.: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J. Med. Imaging 3(3), 034501 (2016)
    Article Google Scholar
  24. The mini-mias database of mammograms. http://peipa.essex.ac.uk/info/mias.html. Accessed 4 Jan 2019
  25. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, vol. 1, p. 3 (2017)
  26. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 248–255. IEEE (2009)
  27. Krizhevsky, A., Hinton, G.: Learning Multiple Layers of Features from Tiny Images. Technical report, Citeseer (2009)
  28. Imagenet classification challenge 2012. http://image-net.org/challenges/LSVRC/2012. Accessed 28 Dec 2018
  29. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
  30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
  31. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectify er neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)
  32. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
  33. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
    Article MathSciNet Google Scholar
  34. Yang, S.-N., Li, F.-J., Liao, Y.-H., Chen, Y.-S., Shen, W.-C., Huang, T.-C.: Identification of breast cancer using integrated information from mri and mammography. PLoS ONE 10(6), e0128404 (2015)
    Article Google Scholar
  35. Görgel, P., Sertbas, A., Uçan, O.N.: Computer-aided classification of breast masses in mammogram images based on spherical wavelet transform and support vector machines. Expert Syst. 32(1), 155–164 (2015)
    Article Google Scholar
  36. Liu, G., Yang, J.: Computer-aided diagnosis of abnormal breasts in mammogram images by weighted-type fractional Fourier transform. Adv. Mech. Eng. 8(2), 1–11 (2016)
    Google Scholar
  37. Wu, X., Lu, S., Wang, H., Phillips, P., Wang, S.: Smart detection on abnormal breasts in digital mammography based on contrast-limited adaptive histogram equalization and chaotic adaptive real-coded biogeography-based optimization. Simulation 92(9), 873–885 (2016)
    Article Google Scholar
  38. Zhang, X., Yang, J., Nguyen, E.: Breast cancer detection via hu moment invariant and feedforward neural network. In: AIP Conference Proceedings, vol. 1954. AIP Publishing (2018)

Download references