Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis (original) (raw)
References
Parfitt AM. Skeletal heterogeneity and the purposes of bone remodelling; implications for the understanding of osteoporosis. In: Marcus R, Zfeldman D, Kelsey J, editors. San Diego: Academic Press, 2001:433–444.
Ruff CB, Hayes WC. Sex differences in age-related remodeling of the femur and tibia. J Orthop Res 1988;6:886–96. Google Scholar
Jordan GR, Loveridge N, Bell KL, Power J, Rushton JN, Reeve J. Spatial clustering of remodeling osteons in the femoral neck cortex: a cause of weakness in hip fracture? Bone 2000;26:305–13. Google Scholar
Fyhrie DP, Schaffler MB. Failure mechanisms in human vertebral cancellous bone. Bone 1994;15:105–9. Google Scholar
Duan Y, Parfitt M, Seeman E. Vertebral bone mass, size and volumetric bone mineral density in premenopausal women, and postmenopausal women with and without spine fractures. J Bone Miner Res 1999;14:1796–802. Google Scholar
Seeman E, Duan Y, Fong C, Edmonds J. Fracture site-specific deficits in bone size and volumetric density in men with spine or hip fractures. J Bone Miner Res 2001;16:120–7. Google Scholar
Vega E, Ghiringhelli G, Mautalen C, Valzacchi GR, Scaglia H, Zylberstein C. Bone mineral density and bone size in men with primary osteoporosis and vertebral fractures. Calcif Tissue Int 1988;62:465–9. Google Scholar
Keaveny TM, Morgan EF, Niebur GL, Yeh OC. Biomechanics of trabecular bone. Annu Rev Biomed Eng 2001;3:307–33. Google Scholar
Meunier PJ, Sellami S, Briancon D, Edouard C. Histological heterogeneity of apparently idiopathic osteoporosis. In: Deluca HF, Frost HM, Jee WSS, Johnston CC, Parfitt AM, editors. Osteoporosis: recent advances in pathogenesis and treatment. Baltimore: University Park Press, 1990:293–301.
Beck TJ, Ruff CB, Scott WW Jr, Plato CC, Tobin JD, Quan CA. Sex differences in geometry of the femoral neck with aging: a structural analysis of bone mineral data. Calcif Tissue Int 1992;50:24–9. Google Scholar
Boonen S, Koutri R, Dequeker J, Aerssens J, Lowet G, Nijs J, et al. Measurement of femoral geometry in type I and type II osteoporosis: differences in hip axis length consistent with heterogeneity in the pathogenesis of osteoporotic fractures. J Bone Miner Res 1995;10:1908–12. Google Scholar
Cheng XG, Lowet G, Boonen S, Nicholson PHF, Brys P, Nijs J, et al. Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone 1997;20:213–8. Google Scholar
Karlsson KM, Sernbo I, Obrant KJ, Redlund-Johnell I, Johnell O. Femoral neck geometry and radiographic signs of osteoporosis as predictors of hip fracture. Bone 1996;18:327–30. Google Scholar
Duan Y, Seeman E. Proximal femoral dimensions in women and men with hip fractures. Unpublished data.
Beck TJ, Oreskovic TL, Stone KL, Ruff CB, Ensrud K, Nevitt MC, et al. Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures. J Bone Miner Res 2000;16:1106–19. Google Scholar
Kalender WA, Felsenberg D, Louis O, Lopez P, Klotz E, Osteaux M, et al. Reference values for trabecular and cortical vertebral bone density in single and dual-energy quantitative computed tomography. Eur J Radiol 1989;9:75–80. Google Scholar
Riggs BL, Wahner HW, Melton LJ III, Richelson LS, Judd HL, Offord KP. Rate of bone loss in the axial and appendicular skeleton of women: evidence of substantial vertebral bone loss prior to menopause. J Clin Invest 1986;77:1847–91. Google Scholar
Gilsanz V, Gibbens DT, Carlson M, Boechat I, Cann CE, Schulz ES. Peak trabecular bone density: a comparison of adolescent and adult. Calcif Tissue Int 1987;43:260–2. Google Scholar
Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, et al. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. J Clin Invest 1994;93:799–808. Google Scholar
Lips P, Courpron P. Meunier PJ. Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 1978;10:13–7. Google Scholar
Parfitt AM. Morphological basis of bone mineral measurements: transient and steady state effects of treatment in osteoporosis. Miner Electrolyte Metab 1980;4:273–87. Google Scholar
Heaney RP. The bone-remodeling transient: implications for the interpretation of clinical studies of bone mass change. J Bone Miner Res 1994;9:1515-23. Google Scholar
Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000;21:115–37. Google Scholar
Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med 1996;2:1132–6. Google Scholar
Aaron JE, Makins NB, Sagreiy K. The microanatomy of trabecular bone loss in normal aging men and women. Clin Orthop 1987;215:260–71. Google Scholar
Bousson V, Meunier A, Bergot C, Vicant E, Rocha MA, Morais MH, et al. Distribution of intracortical porosity in human midfemoral cortex by age and gender. J Bone Miner Res 2001;16:1308–17. Google Scholar
Duan Y, Turner CH, Kim BT, Seeman E. Sexual dimorphism in vertebral fragility is more the result of gender differences in age-related bone gain than bone loss. J Bone Miner Res 2001;16:2267–75. Google Scholar
Oleksik A, Ott SM, Vedi S, Bravenboer N, Compston J, Lips P. Bone structure in patients with low bone mineral density with or without vertebral fracture. J Bone Miner Res 2000;15:1368–75. Google Scholar
Eriksen EF, Hodgson SF, Eastell R, Cedel SL, O'Fallon WM, Riggs BL. Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption, and bone loss at tissue and cellular levels. J Bone Miner Res 1990;5:311–9. Google Scholar
Hordon LD, Raisi M, Aaron JE, Paxton SK, Beneton M, Kanis JA. Trabecular architecture in women and men of similar bone mass with and without vertebral fracture. I. Two-dimensional histology. Bone 2001;27:271–6. Google Scholar
Kimmel DB, Recker RR, Gallagher JC, Vaswani AS, Aloia JF. A comparison of iliac bone histomorphometric data in post-menopausal osteoporotic and normal subjects. Bone Miner 1990;11:217–35. Google Scholar
Foldes J, Parfitt AM, Shih M-S, Rao DS, Kleerekoper M. Structural and geometric changes in iliac bone: relationship to normal aging and osteoporosis. J Bone Miner Res 1991;6:759–66. Google Scholar
Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, et al. Trabecular bone microarchitecture, bone mineral density and vertebral fractures in male osteoporosis. J Bone Miner Res 2000;15:13–19. Google Scholar
Brown JP, Delmas PD, Malavel L, Edouard C, Chapuy MC, Meunier PJ. Serum bone Gla-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet 1984;I:1091–3. Google Scholar
Eastell R, Delmas PD, Hodgson SF, Eriksen EF, Mann KG, Riggs BL. Bone formation rate in older normal women: concurrent assessment with bone histomorphometry, calcium kinetics, and biochemical markers. J Clin Endocrinol Metab 1988;67:741–8. Google Scholar
Mashiba T, Hirano T, Turner CH, Forward MR, Johnson CC, Burr DB. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 2000;15:613–20. Google Scholar
Currey JD. The mechanical consequences of variation in the mineral content of bone. J Biomech 1969;2:1–11. Google Scholar
Boyce RW, Paddock CL, Gleason JR, et al. The effect of risedronate on canine cancellous bone remodeling: three dimensional kinetic reconstruction of the remodeling site. J Bone Miner Res 1995;10:211–21. Google Scholar
Roschger P, Rinnerthaler P, Yates J, Rodan GA, Fratzl P, Klaushofer K. Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone 2001;29:185–91. Google Scholar
Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001;344:1434–41. Google Scholar
Seeman E, Delmas PD. Reconstructing the skeleton with intermittent parathyroid hormone. Trends Endocrinol Metab 2001;12:281–3. Google Scholar
Meunier PJ, Slosman DO, Delmas PD, Sebert JL, Brandi ML, Albanese C, et al. Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis: a 2-year randomized placebo controlled trial. J Clin Endocrinol Metab 2002;87:2060–6. Google Scholar
Marie PJ, Ammann P, Boivin G, Rey C. Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 2001;69:121–9. Google Scholar
Meunier PJ, Roux C, Ortolani S, Badurski J, Kaufman JM, Spector T, et al. Strontium ranelate reduces the vertebral fracture risk in women with postmenopausal osteoporosis. World Congress on Osteoporosis, Lisbon, Portugal. Osteoporos Int 2002;13:520–22 (045). Google Scholar