The association between urinary sodium to potassium ratio and bone density in middle-aged Chinese adults (original) (raw)
Uebelhart B, Rizzoli R (2014) Osteoporosis. Rev Med Suisse 10:101–107 PubMed Google Scholar
Leslie WD, Morin SN (2014) Osteoporosis epidemiology 2013: implications for diagnosis, risk assessment, and treatment. Curr Opin Rheumatol 26:440–446 ArticlePubMedCAS Google Scholar
Wlodarek D, Glabska D, Kolota A et al (2014) Calcium intake and osteoporosis: the influence of calcium intake from dairy products on hip bone mineral density and fracture incidence—a population-based study in women over 55 years of age. Public Health Nutr 17:383–389 ArticlePubMed Google Scholar
Karkkainen M, Tuppurainen M, Salovaara K et al (2010) Effect of calcium and vitamin D supplementation on bone mineral density in women aged 65–71 years: a 3-year randomized population-based trial (OSTPRE-FPS). Osteoporos Int 21:2047–2055 ArticlePubMedCAS Google Scholar
Umaretiya PJ, Thacher TD, Fischer PR, Cha SS, Pettifor JM (2013) Bone mineral density in Nigerian children after discontinuation of calcium supplementation. Bone 55:64–68 ArticlePubMedCAS Google Scholar
Bedford JL, Barr SI (2011) Higher urinary sodium, a proxy for intake, is associated with increased calcium excretion and lower hip bone density in healthy young women with lower calcium intakes. Nutrients 3:951–961 ArticlePubMedPubMed CentralCAS Google Scholar
Teucher B, Dainty JR, Spinks CA et al (2008) Sodium and bone health: impact of moderately high and low salt intakes on calcium metabolism in postmenopausal women. J Bone Miner Res 23:1477–1485 ArticlePubMedCAS Google Scholar
Matkovic V, Ilich JZ, Andon MB et al (1995) Urinary calcium, sodium, and bone mass of young females. Am J Clin Nutr 62:417–425 ArticlePubMedCAS Google Scholar
Sellmeyer DE, Schloetter M, Sebastian A (2002) Potassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet. J Clin Endocrinol Metab 87:2008–2012 ArticlePubMedCAS Google Scholar
Moseley KF, Weaver CM, Appel L, Sebastian A, Sellmeyer DE (2013) Potassium citrate supplementation results in sustained improvement in calcium balance in older men and women. J Bone Miner Res 28:497–504 ArticlePubMedPubMed CentralCAS Google Scholar
Weaver CM (2013) Potassium and health. Advances in nutrition: an International Review Journal 4:368S–377S ArticleCAS Google Scholar
Du S, Batis C, Wang H, Zhang B, Zhang J, Popkin BM (2014) Understanding the patterns and trends of sodium intake, potassium intake, and sodium to potassium ratio and their effect on hypertension in China. Am J Clin Nutr 99:334–343 ArticlePubMedCAS Google Scholar
Brown IJ, Tzoulaki I, Candeias V, Elliott P (2009) Salt intakes around the world: implications for public health. Int J Epidemiol 38:791–813 ArticlePubMed Google Scholar
Ilich JZ, Brownbill RA, Coster DC (2010) Higher habitual sodium intake is not detrimental for bones in older women with adequate calcium intake. Eur J Appl Physiol 109:745–755 ArticlePubMedCAS Google Scholar
Greendale GA, Barrett-Connor E, Edelstein S, Ingles S, Haile R (1994) Dietary sodium and bone mineral density: results of a 16-year follow-up study. J Am Geriatr Soc 42:1050–1055 ArticlePubMedCAS Google Scholar
Newman DJ, Pugia MJ, Lott JA, Wallace JF, Hiar AM (2000) Urinary protein and albumin excretion corrected by creatinine and specific gravity. Clin Chim Acta 294:139–155 ArticlePubMedCAS Google Scholar
Lee SG, Lee W, Kwon OH, Kim JH (2013) Association of urinary sodium/creatinine ratio and urinary sodium/specific gravity unit ratio with blood pressure and hypertension: KNHANES 2009-2010. Clin Chim Acta 424:168–173 ArticlePubMedCAS Google Scholar
Adrogue HJ, Madias NE (2007) Sodium and potassium in the pathogenesis of hypertension. N Engl J Med 356:1966–1978 ArticlePubMedCAS Google Scholar
Adrogue HJ, Madias NE (2014) Sodium surfeit and potassium deficit: keys to the pathogenesis of hypertension. J Am Soc Hypertens 8:203–213 ArticlePubMedCAS Google Scholar
Cook NR, Obarzanek E, Cutler JA, Buring JE, Rexrode KM, Kumanyika SK, Appel LJ, Whelton PK (2009) Joint effects of sodium and potassium intake on subsequent cardiovascular disease: the trials of hypertension prevention follow-up study. Arch Intern Med 169:32–40 ArticlePubMedPubMed Central Google Scholar
Yang Q, Liu T, Kuklina EV, et al. (2011) Sodium and potassium intake and mortality among US adults: prospective data from the Third National Health and Nutrition Examination Survey. Arch Intern Med 171:1183–1191 ArticlePubMed Google Scholar
Liu YH, Xu Y, Wen YB, Guan K, Ling WH, He LP, Su YX, Chen YM (2013) Association of weight-adjusted body fat and fat distribution with bone mineral density in middle-aged chinese adults: a cross-sectional study. PloS one 8:e63339 ArticlePubMedPubMed CentralCAS Google Scholar
Yang XY (ed) (2004) China food composition table 2004. Peking University Medical Press, Beijing
Zhang ZQ, Deng J, He LP, Ling WH, Su YX, Chen YM (2013) Comparison of various anthropometric and body fat indices in identifying cardiometabolic disturbances in Chinese men and women. PLoS One 8:e70893 ArticlePubMedPubMed CentralCAS Google Scholar
Umesawa M, Iso H, Date C, et al. (2008) Relations between dietary sodium and potassium intakes and mortality from cardiovascular disease: the Japan Collaborative Cohort Study for Evaluation of Cancer Risks. Am J Clin Nutr 88:195–202
Cook NR, Kumanyika SK, Cutler JA (1998) Effect of change in sodium excretion on change in blood pressure corrected for measurement error. The Trials of Hypertension Prevention, Phase I. Am J Epidemiol 148:431–444
Dyer AR, Elliott P, Shipley M (1994) Urinary electrolyte excretion in 24 hours and blood pressure in the INTERSALT Study. II. Estimates of electrolyte-blood pressure associations corrected for regression dilution bias. The INTERSALT Cooperative Research Group. Am J Epidemiol 139:940–951
Martin BR, Davis S, Campbell WW, Weaver CM (2007) Exercise and calcium supplementation: effects on calcium homeostasis in sportswomen. Med Sci Sports Exerc 39:1481–1486 ArticlePubMedCAS Google Scholar
Tang YM, Wang DG, Li J, Li XH, Wang Q, Liu N, Liu WT, Li YX (2016) Relationships between micronutrient losses in sweat and blood pressure among heat-exposed steelworkers. Ind Health 54:215–223 ArticlePubMedPubMed Central Google Scholar
Tylavsky FA, Ryder KM, Womack C, Norwood J, Carbone LD (2001) Urinary excretion of calcium in relation to urinary sodium is a determinant of bone mass in pre-adolescent children. J Bone Miner Res 16:S437–S437
Ho SC, Chen YM, Woo JLF, Leung SSF, Lam TH, Janus ED (2001) Sodium is the leading dietary factor associated with urinary calcium excretion in Hong Kong Chinese adults. Osteoporos Int 12:723–731
Kim SW, Jeon JH, Choi YK, Lee WK, Hwang IR, Kim JG, Lee IK, Park KG (2015) Association of urinary sodium/creatinine ratio with bone mineral density in postmenopausal women: KNHANES 2008-2011. Endocrine 49:791–799
Devine A, Criddle RA, Dick IM, Kerr DA, Prince RL (1995) A longitudinal study of the effect of sodium and calcium intakes on regional bone density in postmenopausal women. Am J Clin Nutr 62:740–745
Jones G, Riley MD, Whiting S (2001) Association between urinary potassium, urinary sodium, current diet, and bone density in prepubertal children. Am J Clin Nutr 73:839–844
Zhu K, Devine A, Prince RL (2008) The effects of high potassium consumption on bone mineral density in a prospective cohort study of elderly postmenopausal women. Osteoporos Int 20:335–340 ArticlePubMedCAS Google Scholar
Dawson-Hughes B, Harris SS, Palermo NJ, Castaneda-Sceppa C, Rasmussen HM, Dallal GE (2009) Treatment with potassium bicarbonate lowers calcium excretion and bone resorption in older men and women. J Clin Endocrinol Metab 94:96–102 ArticlePubMedCAS Google Scholar
He FJ, Marciniak M, Carney C et al (2010) Effects of potassium chloride and potassium bicarbonate on endothelial function, cardiovascular risk factors, and bone turnover in mild hypertensives. Hypertension 55:681–688 ArticlePubMedCAS Google Scholar
Jehle S, Hulter HN, Krapf R (2013) Effect of potassium citrate on bone density, microarchitecture, and fracture risk in healthy older adults without osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab 98:207–217 ArticlePubMedCAS Google Scholar
Macdonald HM, Black AJ, Aucott L et al (2008) Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: a randomized controlled trial. Am J Clin Nutr 88:465–474 ArticlePubMedCAS Google Scholar
Nordin BE, Need AG, Morris HA, Horowitz M (1993) The nature and significance of the relationship between urinary sodium and urinary calcium in women. J Nutr 123:1615–1622 ArticlePubMedCAS Google Scholar
Marangella M, Di Stefano M, Casalis S, Berutti S, D’Amelio P, Isaia GC (2004) Effects of potassium citrate supplementation on bone metabolism. Calcif Tissue Int 74:330–335 ArticlePubMedCAS Google Scholar
Harrington M, Cashman KD (2003) High salt intake appears to increase bone resorption in postmenopausal women but high potassium intake ameliorates this adverse effect. Nutr Rev 61:179–183 ArticlePubMed Google Scholar
Itoh R, Suyama Y (1996) Sodium excretion in relation to calcium and hydroxyproline excretion in a healthy Japanese population. Am J Clin Nutr 63:735–740 ArticlePubMedCAS Google Scholar
Ji C, Sykes L, Paul C et al (2012) Systematic review of studies comparing 24-h and spot urine collections for estimating population salt intake. Rev Panam Salud Publica 32:307–315 ArticlePubMed Google Scholar
Koo H, Lee SG, Kim JH (2015) Evaluation of random urine sodium and potassium compensated by creatinine as possible alternative markers for 24 hours urinary sodium and potassium excretion. Ann Lab Med 35:238–241 ArticlePubMedPubMed CentralCAS Google Scholar