Pheromone-induced expression of recombinant proteins in Streptococcus thermophilus (original) (raw)
Axelsson L, Lindstad G, Naterstad K (2003) Development of an inducible gene expression system for Lactobacillus sakei. Lett Appl Microbiol 37:115–120 ArticlePubMedCAS Google Scholar
Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S, Lapidus A, Goltsman E, Mazur M, Pusch GD, Fonstein M, Overbeek R, Kyprides N, Purnelle B, Prozzi D, Ngui K, Masuy D, Hancy F, Burteau S, Boutry M, Delcour J, Goffeau A, Hols P (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558 ArticlePubMedCAS Google Scholar
Buckley ND, Vadeboncoeur C, Leblanc DJ, Lee LN, Frenette M (1999) An effective strategy, applicable to Streptococcus salivarius and related bacteria, to enhance or confer electroporation competence. Appl Environ Microbiol 65:3800–3804 PubMedCAS Google Scholar
Diep DB, Håvarstein LS, Nes IF (1995) A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol 18:631–639 ArticlePubMedCAS Google Scholar
Eijsink VG, Axelsson L, Diep DB, Håvarstein LS, Holo H, Nes IF (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie van Leeuwenhoek 81:639–654 ArticlePubMedCAS Google Scholar
Ellison DW, McCleary WR (2000) The unphosphorylated receiver domain of PhoB silences the activity of its output domain. J Bacteriol 182:6592–6597 ArticlePubMedCAS Google Scholar
Geng H, Nakano S, Nakano MM (2004) Transcriptional activation by Bacillus subtilis ResD: tandem binding to target elements and phosphorylation-dependent and -independent transcriptional activation. J Bacteriol 186:2028–2037 ArticlePubMedCAS Google Scholar
Hava D, Camilli A (2002) Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 45:1389–1405 PubMedCAS Google Scholar
Håvarstein LS (2003) Intercellular communication in Gram-positive bacteria depends on peptide pheromones and their histidine kinase receptors. In: Inouye M, Dutta R (eds) Histidine kinases in signal transduction. Academic, New York, pp 341–363 Google Scholar
Håvarstein LS, Coomaraswamy G, Morrison DA (1995a) An unmodified heptadecapeptide pheromone induces competence for genetic-transformation in Streptococcus pneumoniae. Proc Natl Acad Sci USA 92:11140–11144 Article Google Scholar
Håvarstein LS, Diep DB, Nes IF (1995b) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16:229–240 Article Google Scholar
Håvarstein LS, Gaustad P, Nes IF, Morrison DA (1996) Identification of the streptococcal competence-pheromone receptor. Mol Microbiol 21:863–869 ArticlePubMed Google Scholar
Hidalgo-Grass C, Dan-Goor M, Maly A, Evan Y, Kwinn LA, Nizet V, Ravins M, Jaffe J, Peyser A, Moses AE, Hanski E (2004) Effect of a bacterial pheromone peptide on host chemokine degradation in group A streptococcal necrotising soft-tissue infections. Lancet 363:696–703 ArticlePubMedCAS Google Scholar
Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Ehrlich SD, Guédon E, Monnet V, Renault P, Kleerebezem M (2005) New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29:435–463 ArticlePubMedCAS Google Scholar
Johansen E (1999) Genetic engineering (b) Modification of bacteria. In: Robinson R, Batt C, Patel P (eds) Encyclopedia of food microbiology. Academic, London, pp 917–921 Google Scholar
Kleerebezem M (2004) Quorum sensing control of antibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25:1405–1414 ArticlePubMedCAS Google Scholar
Knutsen E, Ween O, Havarstein LS (2004) Two separate quorum-sensing systems upregulate transcription of the same ABC transporter in Streptococcus pneumoniae. J Bacteriol 186:3078–3085 ArticlePubMedCAS Google Scholar
Li YH, Aspiras MB, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG (2002) A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184:2699–2708 ArticlePubMedCAS Google Scholar
Mathiesen G, Sørvig E, Blatny J, Naterstad K, Axelsson L, Eijsink VGH (2004) High-level gene expression in Lactobacillus plantarum using a pheromone-regulated bacteriocin promoter. Lett Appl Microbiol 39:137–143 ArticlePubMedCAS Google Scholar
Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717 ArticlePubMedCAS Google Scholar
O’Sullivan DJ, Klaenhammer TR (1993) High-copy-number and low-copy-number Lactococcus shuttle cloning vectors with features for clone screening. Gene 137:227–231 ArticlePubMedCAS Google Scholar
Pestova EV, Håvarstein LS, Morrison DA (1996) Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol Microbiol 21:853–862 ArticlePubMedCAS Google Scholar
van der Ploeg JR (2005) Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol 187:3980–3989 ArticlePubMed Google Scholar
Reichmann P, Hakenbeck R (2000) Allelic variation in a peptide-inducible two-component system of Streptococcus pneumoniae. FEMS Microbiol Lett 190:231–236 ArticlePubMedCAS Google Scholar
Risøen PA, Havarstein LS, Diep DB, Nes IF (1998) Identification of the DNA-binding sites for two response regulators involved in control of bacteriocin synthesis in Lactobacillus plantarum C11. Mol Gen Genet 259:224–232 PubMed Google Scholar
Risøen PA, Johnsborg O, Diep DB, Hamoen L, Venema G, Nes IF (2001) Regulation of bacteriocin production in Lactobacillus plantarum depends on a conserved promoter arrangement with consensus binding sequence. Mol Genet Genomi 265:198–206 Article Google Scholar
de Ruyter PGGA, Kuipers OP, Beerthuyzen MM, van Alen Boerrigter I, de Vos WM (1996) Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol 178:3434–3439 PubMed Google Scholar
Sabelnikov AG, Greenberg B, Lacks SA (1995) An extended −10-promoter alone directs transcription of the _Dpn_II _o_peron of Streptococcus pneumoniae. J Mol Biol 250:144–155 ArticlePubMedCAS Google Scholar
de Saizieu A, Gardes C, Flint N, Wagner C, Kamber M, Mitchell TJ, Keck W, Amrein KE, Lange R (2000) Microarray-based identification of a novel Streptococcus pneumoniae regulon controlled by an autoinduced peptide. J Bacteriol 182:4696–4703 ArticlePubMed Google Scholar
Saucier L, Paradkar AS, Frost LS, Jensen SE, Stiles ME (1997) Transcriptional analysis and regulation of carnobacteriocin production in Carnobacterium piscicola LV17. Gene 188:271–277 ArticlePubMedCAS Google Scholar
Sørvig E, Grønqvist S, Naterstad K, Mathiesen G, Eijsink VGH, Axelsson L (2003) Construction of vectors for inducible gene expression in Lactobacillus sakei and L. plantarum. FEMS Microbiol Lett 229:119–126 ArticlePubMed Google Scholar
Sørvig E, Mathiesen G, Naterstad K, Eijsink VG, Axelsson L (2005) High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology 151:2439–2449 ArticlePubMed Google Scholar
Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346 ArticlePubMedCAS Google Scholar
Ween O, Gaustad P, Havarstein LS (1999) Identification of DNA binding sites for ComE, a key regulator of natural competence in Streptococcus pneumoniae. Mol Microbiol 33:817–827 ArticlePubMedCAS Google Scholar