The Ca2+-calmodulin-Ca2+/calmodulin-dependent protein kinase II signaling pathway is involved in oxidative stress-induced mitochondrial permeability transition and apoptosis in isolated rat hepatocytes (original) (raw)
Aguilar HI, Botla R, Arora AS, Bronk SF, Gores GJ (1996) Induction of the mitochondrial permeability transition by protease activity in rats: a mechanism of hepatocyte necrosis. Gastroenterology 110:558–566. doi:10.1053/gast.1996.v110.pm8566604 ArticleCASPubMed Google Scholar
Arrington DD, Van Vleet TR, Schnellmann RG (2006) Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol Cell Physiol 291:C1159–C1171. doi:10.1152/ajpcell.00207.2006 ArticleCASPubMed Google Scholar
Azarashvili T, Krestinina O, Odinokova I, Evtodienko Y, Reiser G (2003) Physiological Ca2+ level and Ca2+-induced permeability transition pore control protein phosphorylation in rat brain mitochondria. Cell Calcium 34:253–259. doi:10.1016/S0143-4160(03)00107-6 ArticleCASPubMed Google Scholar
Bernardi P (1996) The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta 1275:5–9. doi:10.1016/0005-2728(96)00041-2 ArticlePubMed Google Scholar
Brnjic S, Olofsson MH, Havelka AM, Linder S (2010) Chemical biology suggests a role for calcium signaling in mediating sustained JNK activation during apoptosis. Mol BioSyst 6:767–774. doi:10.1039/b920805d ArticleCASPubMed Google Scholar
Byrne AM, Lemasters JJ, Nieminen AL (1999) Contribution of increased mitochondrial free Ca2+ to the mitochondrial permeability transition induced by tert-butylhydroperoxide in rat hepatocytes. Hepatology 29:1523–1531. doi:10.1002/hep.510290521 ArticleCASPubMed Google Scholar
Dimova S, Koleva M, Rangelova D, Stoythchev T (1995) Effect of nifedipine, verapamil, diltiazem and trifluoperazine on acetaminophen toxicity in mice. Arch Toxicol 70:112–118. doi:10.1007/BF02733671 ArticleCASPubMed Google Scholar
Ding WX, Shen HM, Ong CN (2002) Calpain activation after mitochondrial permeability transition in microcystin-induced cell death in rat hepatocytes. Biochem Biophys Res Commun 291:321–331. doi:10.1006/bbrc.2002.6453 2002.6453 ArticleCASPubMed Google Scholar
Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840. doi:10.1001/jama.246.19.2184 CASPubMed Google Scholar
Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450 CASPubMed Google Scholar
Gschwendt M, Dieterich S, Rennecke J, Kittstein W, Mueller HJ, Johannes FJ (1996) Inhibition of protein kinase C μ by various inhibitors. Differentiation from protein kinase c isoenzymes. FEBS Lett 392:77–80. doi:10.1016/0014-5793(96)00785-5 ArticleCASPubMed Google Scholar
Hajimohammadreza I, Probert AW, Coughenour LL, Borosky SA, Marcoux FW, Boxer PA, Wang KK (1995) A specific inhibitor of calcium/calmodulin-dependent protein kinase-II provides neuroprotection against NMDA—and hypoxia/hypoglycemia-induced cell death. J Neurosci 15:4093–4101 CASPubMed Google Scholar
Imberti R, Nieminen AL, Herman B, Lemasters JJ (1993) Mitochondrial and glycolytic dysfunction in lethal injury to hepatocytes by t-butylhydroperoxide: protection by fructose, cyclosporin A and trifluoperazine. J Pharmacol Exp Ther 265:392–400 CASPubMed Google Scholar
Itano T, Matsui H, Doi A, Ohmura Y, Hatase O (1986) Identification of calmodulin-binding proteins in pure mitochondria by photoaffinity labeling. Biochem Int 13:787–792 CASPubMed Google Scholar
Kanno T, Sato EE, Muranaka S, Fujita H, Fujiwara T, Utsumi T, Inoue M, Utsumi K (2004) Oxidative stress underlies the mechanism for Ca2+-induced permeability transition of mitochondria. Free Radic Res 38:27–35. doi:10.1080/10715760310001626266 ArticleCASPubMed Google Scholar
Kim BJ, Ryu SW, Song BJ (2006) JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem 281:21256–21265. doi:10.1074/jbc.M510644200 ArticleCASPubMed Google Scholar
Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7:1166–1173. doi:10.1038/sj.cdd.4400783 ArticleCASPubMed Google Scholar
Kuroda S, Nakai A, Kristian T, Siesjo BK (1997) The calmodulin antagonist trifluoperazine in transient focal brain ischemia in rats. Anti-ischemic effect and therapeutic window. Stroke 28:2539–2544. doi:10.1161/01.STR.28.12.2539 ArticleCASPubMed Google Scholar
Lee CS, Park SY, Ko HH, Song JH, Shin YK, Han ES (2005) Inhibition of MPP+-induced mitochondrial damage and cell death by trifluoperazine and W-7 in PC12 cells. Neurochem Int 46:169–178. doi:10.1016/j.neuint.2004.07.007 ArticleCASPubMed Google Scholar
Lee KK, Shimoji M, Hossain QS, Sunakawa H, Aniya Y (2008) Novel function of glutathione transferase in rat liver mitochondrial membrane: role for cytochrome c release from mitochondria. Toxicol Appl Pharmacol 232:109–118. doi:10.1016/j.taap.2008.06.005 ArticleCASPubMed Google Scholar
Li J, Wang P, Yu S, Zheng Z, Xu X (2012) Calcium entry mediates hyperglycemia-induced apoptosis through Ca2+/calmodulin-dependent kinase II in retinal capillary endothelial cells. Mol Vis 18:2371–2379 CASPubMed CentralPubMed Google Scholar
Liu G, Zhao J, Chang Z, Guo G (2013) CaMKII activates ASK1 to induce apoptosis of spinal astrocytes under oxygen-glucose deprivation. Cell Mol Neurobiol 33:543–549. doi:10.1007/s10571-013-9920-0 ArticleCASPubMed Google Scholar
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275 CASPubMed Google Scholar
Majumder PK, Mishra NC, Sun X, Bharti A, Kharbanda S, Saxena S, Kufe D (2001) Targeting of protein kinase C delta to mitochondria in the oxidative stress response. Cell Growth Differ 12:465–470 CASPubMed Google Scholar
McClelland P, Adam LP, Hathaway DR (1994) Identification of a latent Ca2+/calmodulin dependent protein kinase II phosphorylation site in vascular calpain II. J Biochem 115:41–46 CASPubMed Google Scholar
Molkentin JD (2001) Calcineurin, mitochondrial membrane potential, and cardiomyocyte apoptosis. Circ Res 88:1220–1222 ArticleCASPubMed Google Scholar
Nguyen A, Chen P, Cai H (2004) Role of CaMKII in hydrogen peroxide activation of ERK1/2, p38 MAPK, HSP27 and actin reorganization in endothelial cells. FEBS Lett 572:307–313. doi:10.1016/j.febslet.2004.06.061 ArticleCASPubMed Google Scholar
Nieminen AL, Saylor AK, Tesfai SA, Herman B, Lemasters JJ (1995) Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide. Biochem J 307(Pt 1):99–106. doi:10.1016/0270-9139(93)92139-Q CASPubMed CentralPubMed Google Scholar
Nieminen AL, Byrne AM, Herman B, Lemasters JJ (1997) Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species. Am J Physiol 272:C1286–C1294 CASPubMed Google Scholar
Odagiri K, Katoh H, Kawashima H, Tanaka T, Ohtani H, Saotome M, Urushida T, Satoh H, Hayashi H (2009) Local control of mitochondrial membrane potential, permeability transition pore and reactive oxygen species by calcium and calmodulin in rat ventricular myocytes. J Mol Cell Cardiol 46:989–997. doi:10.1016/j.yjmcc.2008.12.022 ArticleCASPubMed Google Scholar
Perez LM, Milkiewicz P, Ahmed-Choudhury J, Elias E, Ochoa JE, Sanchez Pozzi EJ, Coleman R, Roma MG (2006) Oxidative stress induces actin-cytoskeletal and tight-junctional alterations in hepatocytes by a Ca2+-dependent, PKC-mediated mechanism: protective effect of PKA. Free Radic Biol Med 40:2005–2017. doi:10.1016/j.freeradbiomed.2006.01.034 ArticleCASPubMed Google Scholar
Rich DP, Schworer CM, Colbran RJ, Soderling TR (1990) Proteolytic activation of calcium/calmodulin-dependent protein kinase II: Putative function in synaptic plasticity. Mol Cell Neurosci 1:107–116 ArticleCASPubMed Google Scholar
Ronco MT, Alvarez ML, Monti JA, Carrillo MC, Pisani GB, Lugano MC, Carnovale CE (2004) Role of nitric oxide increase on induced programmed cell death during early stages of rat liver regeneration. Biochim Biophys Acta 1690:70–76. doi:10.1016/j.bbadis.2004.05.004 ArticleCASPubMed Google Scholar
Roy DN, Mandal S, Sen G, Biswas T (2009) Superoxide anion mediated mitochondrial dysfunction leads to hepatocyte apoptosis preferentially in the periportal region during copper toxicity in rats. Chem Biol Interact 182:136–147. doi:10.1016/j.cbi.2009.08.014 ArticleCASPubMed Google Scholar
Ruvolo PP, Deng X, Carr BK, May WS (1998) A functional role for mitochondrial protein kinase Cα in Bcl2 phosphorylation and suppression of apoptosis. J Biol Chem 273:25436–25442. doi:10.1074/jbc.273.39.25436 ArticleCASPubMed Google Scholar
Schwertz H, Carter JM, Abdudureheman M, Russ M, Buerke U et al (2007) Myocardial ischemia/reperfusion causes VDAC phosphorylation which is reduced by cardioprotection with a p38 MAP kinase inhibitor. Proteomics 7:4579–4588. doi:10.1002/pmic.200700734 ArticleCASPubMed Google Scholar
Takano H, Fukushi H, Morishima Y, Shirasaki Y (2003) Calmodulin and calmodulin-dependent kinase II mediate neuronal cell death induced by depolarization. Brain Res 962:41–47. doi:10.1016/S0006-8993(02)03932-X ArticleCASPubMed Google Scholar
Takeyama N, Matsuo N, Tanaka T (1993) Oxidative damage to mitochondria is mediated by the Ca2+-dependent inner-membrane permeability transition. Biochem J 294(Pt 3):719–725 CASPubMed CentralPubMed Google Scholar
Thor H, Hartzell P, Orrenius S (1984) Potentiation of oxidative cell injury in hepatocytes which have accumulated Ca2+. J Biol Chem 259:6612–6615 CASPubMed Google Scholar
Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522. doi:10.1016/0003-2697(69)90064-5 ArticleCASPubMed Google Scholar
Timmins JM, Ozcan L, Seimon TA, Li G, Malagelada C et al (2009) Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest 119:2925–2941. doi:10.1172/JCI38857 ArticleCASPubMed CentralPubMed Google Scholar
Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y, Yoshioka K, Masuyama N, Gotoh Y (2004) JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J 23:1889–1899. doi:10.1038/sj.emboj.7600194 ArticleCASPubMed CentralPubMed Google Scholar
Tzung SP, Fausto N, Hockenbery DM (1997) Expression of Bcl-2 family during liver regeneration and identification of Bcl-x as a delayed early response gene. Am J Pathol 150:1985–1995 CASPubMed CentralPubMed Google Scholar
Vercesi AE, Kowaltowski AJ, Oliveira HC, Castilho RF (2006) Mitochondrial Ca2+ transport, permeability transition and oxidative stress in cell death: implications in cardiotoxicity, neurodegeneration and dyslipidemias. Front Biosci 11:2554–2564. doi:10.2741/1990 ArticleCASPubMed Google Scholar
Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51. doi:10.1016/0022-1759(95)00072-I ArticleCASPubMed Google Scholar
Villarruel MC, Fernandez G, de Ferreyra EC, de Fenos OM, Castro JA (1990) Modulation of the course of CCl4-induced liver injury by the anti-calmodulin drug thioridazine. Toxicol Lett 51:13–21 ArticleCASPubMed Google Scholar
Yaglom JA, Ekhterae D, Gabai VL, Sherman MY (2003) Regulation of necrosis of H9c2 myogenic cells upon transient energy deprivation. Rapid deenergization of mitochondria precedes necrosis and is controlled by reactive oxygen species, stress kinase JNK, HSP72 and ARC. J Biol Chem 278:50483–50496. doi:10.1074/jbc.M306903200 ArticleCASPubMed Google Scholar
Yuen EY, Liu W, Yan Z (2007) The phosphorylation state of GluR1 subunits determines the susceptibility of AMPA receptors to calpain cleavage. J Biol Chem 282:16434–16440. doi:10.1074/jbc.M701283200 ArticleCASPubMed Google Scholar