The hallucinogenic world of tryptamines: an updated review (original) (raw)
Adams LM, Geyer MA (1985a) Effects of DOM and DMT in a proposed animal model of hallucinogenic activity. Prog Neuropsychopharmacol Biol Psychiatry 9(2):121–132 CASPubMed Google Scholar
Adams LM, Geyer MA (1985b) A proposed animal model for hallucinogens based on LSD’s effects on patterns of exploration in rats. Behav Neurosci 99(5):881–900 CASPubMed Google Scholar
Alatrash G, Majhail NS, Pile JC (2006) Rhabdomyolysis after ingestion of “foxy,” a hallucinogenic tryptamine derivative. Mayo Clin Proc 81(4):550–551. doi:10.4065/81.4.550 PubMed Google Scholar
Anden NE, Corrodi H, Fuxe K, Hokfelt T (1968) Evidence for a central 5-hydroxytryptamine receptor stimulation by lysergic acid diethylamide. Br J Pharmacol 34(1):1–7 CASPubMed CentralPubMed Google Scholar
Appel JB, Callahan PM (1989) Involvement of 5-HT receptor subtypes in the discriminative stimulus properties of mescaline. Eur J Pharmacol 159(1):41–46 CASPubMed Google Scholar
Badham ER (1984) Ethnobotany of psilocybin mushrooms, especially Psilocybe cubensis. J Ethnopharmacol 10(2):249–254 CASPubMed Google Scholar
Barker SA, Monti JA, Christian ST (1980) Metabolism of the hallucinogen N,_N_-dimethyltryptamine in rat brain homogenates. Biochem Pharmacol 29(7):1049–1057 CASPubMed Google Scholar
Barker SA, McIlhenny EH, Strassman R (2012) A critical review of reports of endogenous psychedelic N,_N_-dimethyltryptamines in humans: 1955–2010. Drug Test Anal 4(7–8):617–635. doi:10.1002/dta.422 CASPubMed Google Scholar
Benneyworth MA, Smith RL, Barrett RJ, Sanders-Bush E (2005) Complex discriminative stimulus properties of (+)lysergic acid diethylamide (LSD) in C57Bl/6J mice. Psychopharmacology 179(4):854–862. doi:10.1007/s00213-004-2108-z CASPubMed Google Scholar
Bjornstad K, Hulten P, Beck O, Helander A (2009) Bioanalytical and clinical evaluation of 103 suspected cases of intoxications with psychoactive plant materials. Clin Toxicol 47(6):566–572. doi:10.1080/15563650903037181 Google Scholar
Blair JB, Kurrasch-Orbaugh D, Marona-Lewicka D et al (2000) Effect of ring fluorination on the pharmacology of hallucinogenic tryptamines. J Med Chem 43(24):4701–4710 CASPubMed Google Scholar
Boland DM, Andollo W, Hime GW, Hearn WL (2005) Fatality due to acute alpha-methyltryptamine intoxication. J Anal Toxicol 29(5):394–397 CASPubMed Google Scholar
Brandt SD, Freeman S, McGagh P, Abdul-Halim N, Alder JF (2004) An analytical perspective on favoured synthetic routes to the psychoactive tryptamines. J Pharm Biomed Anal 36(4):675–691. doi:10.1016/j.jpba.2004.08.022 CASPubMed Google Scholar
Brimblecombe RW (1967) Hyperthermic effects of some tryptamine derivatives in relation to their behavioral activity. Int J Neuropharmacol 6(5):423–429 CASPubMed Google Scholar
Brush DE, Bird SB, Boyer EW (2004) Monoamine oxidase inhibitor poisoning resulting from Internet misinformation on illicit substances. J Toxicol Clin Toxicol 42(2):191–195 CASPubMed Google Scholar
Bullis RK (2008) The “vine of the soul” vs. the controlled substances act: implications of the hoasca case. J Psychoact Drugs 40(2):193–199. doi:10.1080/02791072.2008.10400630 Google Scholar
Bunzow JR, Sonders MS, Arttamangkul S et al (2001) Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 60(6):1181–1188 CASPubMed Google Scholar
Cakic V, Potkonyak J, Marshall A (2010) Dimethyltryptamine (DMT): subjective effects and patterns of use among Australian recreational users. Drug Alcohol Depend 111(1–2):30–37. doi:10.1016/j.drugalcdep.2010.03.015 PubMed Google Scholar
Callaway CW, Wing LL, Geyer MA (1990) Serotonin release contributes to the locomotor stimulant effects of 3,4-methylenedioxymethamphetamine in rats. J Pharmacol Exp Ther 254(2):456–464 CASPubMed Google Scholar
Callaway JC, Raymon LP, Hearn WL et al (1996) Quantitation of N,_N_-dimethyltryptamine and harmala alkaloids in human plasma after oral dosing with ayahuasca. J Anal Toxicol 20(6):492–497 CASPubMed Google Scholar
Chamakura RP (1994) Bufotenine—a hallucinogen in ancient snuff powders of South America and a drug of abuse on the streets of New York City. Forensic Sci Rev 6:1–18 Google Scholar
Christian ST, Harrison R, Quayle E, Pagel J, Monti J (1977) The in vitro identification of dimethyltryptamine (DMT) in mammalian brain and its characterization as a possible endogenous neuroregulatory agent. Biochem Med 18(2):164–183 CASPubMed Google Scholar
Clatts MC, Goldsamt LA, Yi H (2005) Club drug use among young men who have sex with men in NYC: a preliminary epidemiological profile. Subst Use Misuse 40(9–10):1317–1330. doi:10.1081/JA-200066898 PubMed CentralPubMed Google Scholar
Colpaert FC, Niemegeers CJ, Janssen PA (1982) A drug discrimination analysis of lysergic acid diethylamide (LSD): in vivo agonist and antagonist effects of purported 5-hydroxytryptamine antagonists and of pirenperone, a LSD-antagonist. J Pharmacol Exp Ther 221(1):206–214 CASPubMed Google Scholar
Compton DM, Dietrich KL, Selinger MC, Testa EK (2011) 5-methoxy-N,_N_-di(iso)propyltryptamine hydrochloride (Foxy)-induced cognitive deficits in rat after exposure in adolescence. Physiol Behav 103(2):203–209. doi:10.1016/j.physbeh.2011.01.021 CASPubMed Google Scholar
Corkery JM, Durkin E, Elliott S, Schifano F, Ghodse AH (2012) The recreational tryptamine 5-MeO-DALT (N,_N_-diallyl-5-methoxytryptamine): a brief review. Prog Neuropsychopharmacol Biol Psychiatry 39(2):259–262. doi:10.1016/j.pnpbp.2012.05.022 CASPubMed Google Scholar
Cozzi NV, Gopalakrishnan A, Anderson LL et al (2009) Dimethyltryptamine and other hallucinogenic tryptamines exhibit substrate behavior at the serotonin uptake transporter and the vesicle monoamine transporter. J Neural Transm 116(12):1591–1599. doi:10.1007/s00702-009-0308-8 CASPubMed Google Scholar
Cunningham KA, Appel JB (1987) Neuropharmacological reassessment of the discriminative stimulus properties of d-lysergic acid diethylamide (LSD). Psychopharmacology 91(1):67–73 CASPubMed Google Scholar
Drug Enforcement Administration DoJ (2001) An encounter with 5-methoxy-N,_N_-diisopropyltryptamine. Microgram Bull 34:126 Google Scholar
Drug Enforcement Administration DoJ (2003) Schedules of controlled substances: temporary placement of alpha-methyltryptamine and 5-methoxy-N,_N_-diisopropyltryptamine into Schedule I. Final rule. Fed Regist 68(65):16427–16430 Google Scholar
Drug Enforcement Administration DoJ (2004) Schedules of controlled substances: placement of alpha-methyltryptamine and 5-methoxy-N,_N_-diisopropyltryptamine into Schedule I of the Controlled Substances Act. Final rule. Fed Regist 69(188):58950–58953 Google Scholar
Fantegrossi WE, Harrington AW, Kiessel CL et al (2006) Hallucinogen-like actions of 5-methoxy-N,_N_-diisopropyltryptamine in mice and rats. Pharmacol Biochem Behav 83(1):122–129. doi:10.1016/j.pbb.2005.12.015 CASPubMed Google Scholar
Fantegrossi WE, Reissig CJ, Katz EB, Yarosh HL, Rice KC, Winter JC (2008b) Hallucinogen-like effects of N,_N_-dipropyltryptamine (DPT): possible mediation by serotonin 5-HT1A and 5-HT2A receptors in rodents. Pharmacol Biochem Behav 88(3):358–365. doi:10.1016/j.pbb.2007.09.007 CASPubMed CentralPubMed Google Scholar
Fish MS, Johnson NM, Horning EC (1955a) Piptadenia alkaloids. Indole bases of Piptadenia peregrina (L) Benth and related species. J Am Chem Soc 77:5892–5895 CAS Google Scholar
Fish MS, Johnson NM, Lawrence EP, Horning EC (1955b) Oxidative _N_-dealkylation. Biochim Biophys Acta 18(4):564–565 CASPubMed Google Scholar
Fontanilla D, Johannessen M, Hajipour AR, Cozzi NV, Jackson MB, Ruoho AE (2009) The hallucinogen N,_N_-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 323(5916):934–937. doi:10.1126/science.1166127 CASPubMed CentralPubMed Google Scholar
Franzen F, Gross H (1965) Tryptamine, N,_N_-dimethyltryptamine, N,_N_-dimethyl-5-hydroxytryptamine and 5-methoxytryptamine in human blood and urine. Nature 206(988):1052 CASPubMed Google Scholar
Freeman S, Alder JF (2002) Arylethylamine psychotropic recreational drugs: a chemical perspective. Eur J Med Chem 37(7):527–539 CASPubMed Google Scholar
Fuse-Nagase Y, Nishikawa T (2013) Prolonged delusional state triggered by repeated ingestion of aromatic liquid in a past 5-methoxy-N,_N_-diisopropyltryptamine abuser. Addict Sci Clin Pract 8(1):9. doi:10.1186/1940-0640-8-9 PubMed CentralPubMed Google Scholar
Gatch MB, Rutledge MA, Carbonaro T, Forster MJ (2009) Comparison of the discriminative stimulus effects of dimethyltryptamine with different classes of psychoactive compounds in rats. Psychopharmacology 204(4):715–724. doi:10.1007/s00213-009-1501-z CASPubMed CentralPubMed Google Scholar
Geyer MA, Light RK, Rose GJ et al (1979) A characteristic effect of hallucinogens on investigatory responding in rats. Psychopharmacology 65(1):35–40 CASPubMed Google Scholar
Gibbons S (2012) ‘Legal highs’-novel and emerging psychoactive drugs: a chemical overview for the toxicologist. Clin Toxicol 50(1):15–24. doi:10.3109/15563650.2011.645952 CAS Google Scholar
Glennon RA (1986) Discriminative stimulus properties of the serotonergic agent 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Life Sci 39(9):825–830 CASPubMed Google Scholar
Glennon RA (1996) Classical hallucinogens. In: Schuster CR, Kuhar MJ (eds) Pharmacological aspects of drug dependence. Handbook of experimental pharmacology, Springer, Basel, pp 343–371
Glennon RA, Rosecrans JA, Young R, Gaines J (1979) Hallucinogens as a discriminative stimuli: generalization of DOM to a 5-methoxy-N,_N_-dimethyltryptamine stimulus. Life Sci 24(11):993–997 CASPubMed Google Scholar
Glennon RA, Young R, Rosecrans JA (1983) Antagonism of the effects of the hallucinogen DOM and the purported 5-HT agonist quipazine by 5-HT2 antagonists. Eur J Pharmacol 91(2–3):189–196 CASPubMed Google Scholar
Glennon RA, Titeler M, McKenney JD (1984) Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci 35(25):2505–2511 CASPubMed Google Scholar
Glennon RA, Titeler M, Seggel MR, Lyon RA (1987) N-methyl derivatives of the 5-HT2 agonist 1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane. J Med Chem 30(5):930–932 CASPubMed Google Scholar
Glennon RA, Chaurasia C, Titeler M (1990) Binding of indolylalkylamines at 5-HT2 serotonin receptors: examination of a hydrophobic binding region. J Med Chem 33(10):2777–2784 CASPubMed Google Scholar
Gonzalez-Maeso J, Weisstaub NV, Zhou M et al (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439–452. doi:10.1016/j.neuron.2007.01.008 CASPubMed Google Scholar
Government P (2013) Decreto Lei no. 54/2013. In: Justiça Dd (ed). Diário da República 75
Gresch PJ, Barrett RJ, Sanders-Bush E, Smith RL (2007) 5-Hydroxytryptamine (serotonin)2A receptors in rat anterior cingulate cortex mediate the discriminative stimulus properties of d-lysergic acid diethylamide. J Pharmacol Exp Ther 320(2):662–669. doi:10.1124/jpet.106.112946 CASPubMed Google Scholar
Guchhait RB (1976) Biogenesis of 5-methoxy-N,_N_-dimethyltryptamine in human pineal gland. J Neurochem 26(1):187–190 CASPubMed Google Scholar
Gutsche B, Grun C, Scheutzow D, Herderich M (1999) Tryptophan glycoconjugates in food and human urine. Biochem J 343(Pt 1):11–19 CASPubMed CentralPubMed Google Scholar
Hagenbach D, Werthmuller L (2011) Mystic chemist: the life of Albert Hofmann and his discovery of LSD. Synergetic Press, Santa Fe, New Mexico Google Scholar
Halberstadt A, Geyer M (2013) Neuropharmacology of lysergic acid diethylamide (LSD) and other hallucinogens. In: Miller P (ed) Biological research on addiction: comprehensive addictive behaviors and disorders, vol 2. Elsevier, London, pp 625–635
Halberstadt AL, Buell MR, Masten VL, Risbrough VB, Geyer MA (2008) Modification of the effects of 5-methoxy-N,_N_-dimethyltryptamine on exploratory behavior in rats by monoamine oxidase inhibitors. Psychopharmacology 201(1):55–66. doi:10.1007/s00213-008-1247-z CASPubMed CentralPubMed Google Scholar
Halberstadt AL, Koedood L, Powell SB, Geyer MA (2011) Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice. J Psychopharmacol 25(11):1548–1561. doi:10.1177/0269881110388326 CASPubMed CentralPubMed Google Scholar
Handovsky H (1920) Ein Alkaloid in Gifte von Bufo vulgaris. Arch Exp Pathol Pharmacol 86:138–158 CAS Google Scholar
Hasler F, Bourquin D, Brenneisen R, Bar T, Vollenweider FX (1997) Determination of psilocin and 4-hydroxyindole-3-acetic acid in plasma by HPLC-ECD and pharmacokinetic profiles of oral and intravenous psilocybin in man. Pharm Acta Helv 72(3):175–184 CASPubMed Google Scholar
Hasler F, Bourquin D, Brenneisen R, Vollenweider FX (2002) Renal excretion profiles of psilocin following oral administration of psilocybin: a controlled study in man. J Pharm Biomed Anal 30(2):331–339 CASPubMed Google Scholar
Hasler F, Grimberg U, Benz MA, Huber T, Vollenweider FX (2004) Acute psychological and physiological effects of psilocybin in healthy humans: a double-blind, placebo-controlled dose-effect study. Psychopharmacology 172(2):145–156. doi:10.1007/s00213-003-1640-6 CASPubMed Google Scholar
Helsley S, Fiorella D, Rabin RA, Winter JC (1998) A comparison of N,_N_-dimethyltryptamine, harmaline, and selected congeners in rats trained with LSD as a discriminative stimulus. Prog Neuropsychopharmacol Biol Psychiatry 22(4):649–663 CASPubMed Google Scholar
Horita A, Dille JM (1954) Pyretogenic effect of lysergic acid diethylamide. Science 120(3131):1100–1101 CASPubMed Google Scholar
Horita A, Gogerty JH (1958) The pyretogenic effect of 5-hydroxytryptophan and its comparison with that of LSD. J Pharmacol Exp Ther 122(2):195–200 CASPubMed Google Scholar
Horita A, Weber LJ (1961) The enzymic dephosphorylation and oxidation of psilocybin and psilocin by mammalian tissue homogenates. Biochem Pharmacol 7:47–54 CASPubMed Google Scholar
Hoshino T, Shimodaira K (1935) Synthese des Bufotenins und über 3-Methyl-3-β-oxyäthyl-indolenin. Synthesen in der Indol-Gruppe. XIV. Justus Liebigs Annalen der Chemie 520(1):19–30. doi:10.1002/jlac.19355200104 CAS Google Scholar
Ikeda A, Sekiguchi K, Fujita K, Yamadera H, Koga Y (2005) 5-methoxy-N,_N_-diisopropyltryptamine-induced flashbacks. Am J Psychiatry 162(4):815. doi:10.1176/appi.ajp.162.4.815 PubMed Google Scholar
Isbell H (1959) Comparison of the reactions induced by psilocybin and LSD-25 in man. Psychopharmacologia 1:29–38 CASPubMed Google Scholar
Jovel A, Felthous A, Bhattacharyya A (2014) Delirium due to intoxication from the novel synthetic tryptamine 5-MeO-DALT. J Forensic Sci 59(3):844–846. doi:10.1111/1556-4029.12367 CASPubMed Google Scholar
Kamata T, Katagi M, Kamata HT et al (2006) Metabolism of the psychotomimetic tryptamine derivative 5-methoxy-N,_N_-diisopropyltryptamine in humans: identification and quantification of its urinary metabolites. Drug Metab Dispos 34(2):281–287. doi:10.1124/dmd.105.005835 CASPubMed Google Scholar
Kamata T, Katagi M, Tsuchihashi H (2010) Metabolism and toxicological analyses of hallucinogenic tryptamine analogues being abused in Japan. Forensic Toxicol 28(1):1–8. doi:10.1007/s11419-009-0087-9 CAS Google Scholar
Kanamori T, Kuwayama K, Tsujikawa K et al (2006) In vivo metabolism of 5-methoxy-N,_N_-diisopropyltryptamine in rat. J Health Sci 52(4):425–430 CAS Google Scholar
Kaplan J, Mandel LR, Stillman R et al (1974) Blood and urine levels of N,_N_-dimethyltryptamine following administration of psychoactive dosages to human subjects. Psychopharmacologia 38(3):239–245 CASPubMed Google Scholar
Katagi M, Tsutsumi H, Miki A, Nakajima K, Tsuchihashi H (2002) Analysis of clandestine tablets of amphetamines and their related designer drugs encountered in recent Japan. Jpn J Forensic Toxicol 20:303–319 CAS Google Scholar
Kikura-Hanajiri R, Hayashi M, Saisho K, Goda Y (2005) Simultaneous determination of nineteen hallucinogenic tryptamines/beta-calbolines and phenethylamines using gas chromatography-mass spectrometry and liquid chromatography-electrospray ionisation-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 825(1):29–37. doi:10.1016/j.jchromb.2005.01.041 CASPubMed Google Scholar
Kim H, Sablin SO, Ramsay RR (1997) Inhibition of monoamine oxidase A by beta-carboline derivatives. Arch Biochem Biophys 337(1):137–142. doi:10.1006/abbi.1996.9771 CASPubMed Google Scholar
Kjellgren A, Soussan C (2011) Heaven and hell—a phenomenological study of recreational use of 4-HO-MET in Sweden. J Psychoact Drugs 43(3):211–219 Google Scholar
Klette KL, Anderson CJ, Poch GK, Nimrod AC, ElSohly MA (2000) Metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy LSD (O-H-LSD) in human liver microsomes and cryopreserved human hepatocytes. J Anal Toxicol 24(7):550–556 CASPubMed Google Scholar
Koerner J, Appel JB (1982) Psilocybin as a discriminative stimulus: lack of specificity in an animal behavior model for ‘hallucinogens’. Psychopharmacology 76(2):130–135 CASPubMed Google Scholar
Krebs KM, Geyer MA (1993) Behavioral characterization of alpha-ethyltryptamine, a tryptamine derivative with MDMA-like properties in rats. Psychopharmacology 113(2):284–287 CASPubMed Google Scholar
Lee S-F, Hsu J, Tsay W-I (2013) The trend of drug abuse in Taiwan during the years 1999 to 2011. J Food Drug Anal 21:390–396 Google Scholar
Leino M, Airaksinen MM (1985) Methoxyindoles of the retina. Med Biol 63(4):160–169 CASPubMed Google Scholar
Lessin AW, Long RF, Parkes MW (1965) Central Stimulant Actions of Alpha-Alkyl Substituted Tryptamines in Mice. Br J Pharmacol Chemother 24:49–67 CASPubMed CentralPubMed Google Scholar
Li JX, Rice KC, France CP (2008) Discriminative stimulus effects of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane in rhesus monkeys. J Pharmacol Exp Ther 324(2):827–833. doi:10.1124/jpet.107.130625 CASPubMed Google Scholar
Manske R (1931) A synthesis of the methyltryptamines and some derivatives. Can J Res 5:592–600 CAS Google Scholar
Marek GJ, Aghajanian GK (1996) LSD and the phenethylamine hallucinogen are potent partial agonists at 5-HT2A receptors on interneurons in rat piriform cortex. J Pharmacol Exp Ther 278(3):1373–1382 CASPubMed Google Scholar
Marona-Lewicka D, Thisted RA, Nichols DE (2005) Distinct temporal phases in the behavioral pharmacology of LSD: dopamine D2 receptor-mediated effects in the rat and implications for psychosis. Psychopharmacology 180(3):427–435. doi:10.1007/s00213-005-2183-9 CASPubMed Google Scholar
Matsushima Y, Eguchi F, Kikukawa T, Matsuda T (2009) Historical overview of psychoactive mushrooms. Inflamm Regen 29(1):47–58 CAS Google Scholar
McIlhenny EH, Riba J, Barbanoj MJ, Strassman R, Barker SA (2011) Methodology for and the determination of the major constituents and metabolites of the Amazonian botanical medicine ayahuasca in human urine. Biomed Chromatogr 25(9):970–984. doi:10.1002/bmc.1551 CASPubMed Google Scholar
McIlhenny EH, Riba J, Barbanoj MJ, Strassman R, Barker SA (2012) Methodology for determining major constituents of ayahuasca and their metabolites in blood. Biomed Chromatogr 26(3):301–313. doi:10.1002/bmc.1657 CASPubMed Google Scholar
McKenna DJ, Towers GH, Abbott F (1984) Monoamine oxidase inhibitors in South American hallucinogenic plants: tryptamine and beta-carboline constituents of ayahuasca. J Ethnopharmacol 10(2):195–223 CASPubMed Google Scholar
McKenna DJ, Repke DB, Lo L, Peroutka SJ (1990) Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology 29(3):193–198 CASPubMed Google Scholar
Meatherall R, Sharma P (2003) Foxy, a designer tryptamine hallucinogen. J Anal Toxicol 27(5):313–317 CASPubMed Google Scholar
Mittman SM, Geyer MA (1991) Dissociation of multiple effects of acute LSD on exploratory behavior in rats by ritanserin and propranolol. Psychopharmacology 105(1):69–76 CASPubMed Google Scholar
Moretti C, Gaillard Y, Grenand P, Bevalot F, Prevosto JM (2006) Identification of 5-hydroxy-tryptamine (bufotenine) in takini (Brosimumacutifolium Huber subsp. acutifolium C.C. Berg, Moraceae), a shamanic potion used in the Guiana Plateau. J Ethnopharmacol 106(2):198–202. doi:10.1016/j.jep.2005.12.022 CASPubMed Google Scholar
Musselman ME, Hampton JP (2014) “Not for human consumption”: a review of emerging designer drugs. Pharmacotherapy 34(7):745–757. doi:10.1002/phar.1424 PubMed Google Scholar
Musshoff F, Daldrup T, Bonte W, Leitner A, Lesch OM (1996) Formaldehyde-derived tetrahydroisoquinolines and tetrahydro-beta-carbolines in human urine. J Chromatogr B Biomed Appl 683(2):163–176 CASPubMed Google Scholar
Nagai F, Nonaka R, Satoh Hisashi Kamimura K (2007) The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur J Pharmacol 559(2–3):132–137. doi:10.1016/j.ejphar.2006.11.075 CASPubMed Google Scholar
Narasimhachari N, Heller B, Spaide J et al (1971) Urinary studies of schizophrenics and controls. Biol Psychiatry 3(1):9–20 CASPubMed Google Scholar
Narimatsu S, Yonemoto R, Saito K et al (2006) Oxidative metabolism of 5-methoxy-N,_N_-diisopropyltryptamine (Foxy) by human liver microsomes and recombinant cytochrome P450 enzymes. Biochem Pharmacol 71(9):1377–1385. doi:10.1016/j.bcp.2006.01.015 CASPubMed Google Scholar
Narimatsu S, Yonemoto R, Masuda K et al (2008) Oxidation of 5-methoxy-N,_N_-diisopropyltryptamine in rat liver microsomes and recombinant cytochrome P450 enzymes. Biochem Pharmacol 75(3):752–760. doi:10.1016/j.bcp.2007.09.019 CASPubMed Google Scholar
Ott J (2001a) Pharmanopo-psychonautics: human intranasal, sublingual, intrarectal, pulmonary and oral pharmacology of bufotenine. J Psychoact Drugs 33(3):273–281. doi:10.1080/02791072.2001.10400574 CAS Google Scholar
Ott J (2001b) Pharmepena-psychonautics: human intranasal, sublingual and oral pharmacology of 5-methoxy-N,_N_-dimethyl-tryptamine. J Psychoact Drugs 33(4):403–407. doi:10.1080/02791072.2001.10399925 CAS Google Scholar
Ouagazzal A, Grottick AJ, Moreau J, Higgins GA (2001) Effect of LSD on prepulse inhibition and spontaneous behavior in the rat. A pharmacological analysis and comparison between two rat strains. Neuropsychopharmacology 25(4):565–575. doi:10.1016/S0893-133X(01)00282-2 CASPubMed Google Scholar
Peden NR, Bissett AF, Macaulay KE, Crooks J, Pelosi AJ (1981) Clinical toxicology of “magic mushroom” ingestion. Postgrad Med J 57(671):543–545 CASPubMed CentralPubMed Google Scholar
Pierce PA, Peroutka SJ (1989) Hallucinogenic drug interactions with neurotransmitter receptor binding sites in human cortex. Psychopharmacology 97(1):118–122 CASPubMed Google Scholar
Poch GK, Klette KL, Hallare DA et al (1999) Detection of metabolites of lysergic acid diethylamide (LSD) in human urine specimens: 2-oxo-3-hydroxy-LSD, a prevalent metabolite of LSD. J Chromatogr B Biomed Sci Appl 724(1):23–33 CASPubMed Google Scholar
Poch GK, Klette KL, Anderson C (2000) The quantitation of 2-oxo-3-hydroxy lysergic acid diethylamide (O-H-LSD) in human urine specimens, a metabolite of LSD: comparative analysis using liquid chromatography-selected ion monitoring mass spectrometry and liquid chromatography-ion trap mass spectrometry. J Anal Toxicol 24(3):170–179 CASPubMed Google Scholar
Ramsey J, Dargan PI, Smyllie M et al (2010) Buying ‘legal’ recreational drugs does not mean that you are not breaking the law. QJM 103(10):777–783. doi:10.1093/qjmed/hcq132 CASPubMed Google Scholar
Reuschel SA, Eades D, Foltz RL (1999) Recent advances in chromatographic and mass spectrometric methods for determination of LSD and its metabolites in physiological specimens. J Chromatogr B Biomed Sci Appl 733(1–2):145–159 CASPubMed Google Scholar
Riba J, McIlhenny EH, Valle M, Bouso JC, Barker SA (2012) Metabolism and disposition of N,_N_-dimethyltryptamine and harmala alkaloids after oral administration of ayahuasca. Drug Test Anal 4(7–8):610–616. doi:10.1002/dta.1344 CASPubMed Google Scholar
Riba J, McIlhenny EH, Bouso JC, Barker SA (2014) Metabolism and urinary disposition of N,_N_-dimethyltryptamine after oral and smoked administration: a comparative study. Drug Test Anal. doi:10.1002/dta.1685 PubMed Google Scholar
Rivier L, Lindgren J-E (1972) “Ayahuasca”, the South American hallucinogenic drink: an ethnobotanical and chemical investigation. Econ Bot 26(2):101–129. doi:10.1007/BF02860772 CAS Google Scholar
Rogawski MA, Aghajanian GK (1981) Serotonin autoreceptors on dorsal raphe neurons: structure-activity relationships of tryptamine analogs. J Neurosci 1(10):1148–1154 CASPubMed Google Scholar
Rothlin E (1957) Pharmacology of lysergic acid diethylamide and some of its related compounds. J Pharm Pharmacol 9(9):569–587 CASPubMed Google Scholar
Sabol KE, Lew R, Richards JB, Vosmer GL, Seiden LS (1996) Methylenedioxymethamphetamine-induced serotonin deficits are followed by partial recovery over a 52-week period. Part I: synaptosomal uptake and tissue concentrations. J Pharmacol Exp Ther 276(2):846–854 CASPubMed Google Scholar
Scanzello CR, Hatzidimitriou G, Martello AL, Katz JL, Ricaurte GA (1993) Serotonergic recovery after (±)3,4-(methylenedioxy) methamphetamine injury: observations in rats. J Pharmacol Exp Ther 264(3):1484–1491 CASPubMed Google Scholar
Schmidt MM, Sharma A, Schifano F, Feinmann C (2011) “Legal highs” on the net-Evaluation of UK-based Websites, products and product information. Forensic Sci Int 206(1–3):92–97. doi:10.1016/j.forsciint.2010.06.030 PubMed Google Scholar
Schreiber R, Brocco M, Millan MJ (1994) Blockade of the discriminative stimulus effects of by MDL 100,907 and the ‘atypical’ antipsychotics, clozapine and risperidone. Eur J Pharmacol 264(1):99–102 CASPubMed Google Scholar
Schwartz RH, Smith DE (1988) Hallucinogenic mushrooms. Clin Pediatr 27(2):70–73 CAS Google Scholar
Seely KA, Lapoint J, Moran JH, Fattore L (2012) Spice drugs are more than harmless herbal blends: a review of the pharmacology and toxicology of synthetic cannabinoids. Prog Neuropsychopharmacol Biol Psychiatry 39(2):234–243. doi:10.1016/j.pnpbp.2012.04.017 CASPubMed CentralPubMed Google Scholar
Sheard MH, Astrachan DI, Davis M (1977) The effect of D-lysergic acid diethylamide (LSD) upon shock elicited fighting in rats. Life Sci 20(3):427–430 CASPubMed Google Scholar
Shen HW, Jiang XL, Winter JC, Yu AM (2010) Psychedelic 5-methoxy-N,_N_-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions. Curr Drug Metab 11(8):659–666 CASPubMed CentralPubMed Google Scholar
Shimizu E, Watanabe H, Kojima T et al (2007) Combined intoxication with methylone and 5-MeO-MIPT. Prog Neuropsychopharmacol Biol Psychiatry 31(1):288–291. doi:10.1016/j.pnpbp.2006.06.012 CASPubMed Google Scholar
Shulgin AT, Shulgin A (1997) TIHKAL: the continuation. Transform, Berkeley Google Scholar
Siddik ZH, Barnes RD, Dring LG, Smith RL, Williams RT (1979) The fate of lysergic acid DI[14C]ethylamide ([14C]LSD) in the rat, guinea pig and rhesus monkey and of [14C]iso-LSD in rat. Biochem Pharmacol 28(20):3093–3101 CASPubMed Google Scholar
Sitaram BR, McLeod WR (1990) Observations on the metabolism of the psychotomimetic indolealkylamines: implications for future clinical studies. Biol Psychiatry 28(10):841–848 CASPubMed Google Scholar
Sitaram BR, Lockett L, Blackman GL, McLeod WR (1987a) Urinary excretion of 5-methoxy-N,_N_-dimethyltryptamine, N,_N_-dimethyltryptamine and their _N_-oxides in the rat. Biochem Pharmacol 36(13):2235–2237 CASPubMed Google Scholar
Sitaram BR, Lockett L, Talomsin R, Blackman GL, McLeod WR (1987b) In vivo metabolism of 5-methoxy-N,_N_-dimethyltryptamine and N,_N_-dimethyltryptamine in the rat. Biochem Pharmacol 36(9):1509–1512 CASPubMed Google Scholar
Skelton MR, Schaefer TL, Herring NR, Grace CE, Vorhees CV, Williams MT (2009) Comparison of the developmental effects of 5-methoxy-N,_N_-diisopropyltryptamine (Foxy) to (±)-3,4-methylenedioxymethamphetamine (ecstasy) in rats. Psychopharmacology 204(2):287–297. doi:10.1007/s00213-009-1459-x CASPubMed CentralPubMed Google Scholar
Sklerov JH, Magluilo J Jr, Shannon KK, Smith ML (2000) Liquid chromatography-electrospray ionization mass spectrometry for the detection of lysergide and a major metabolite, 2-oxo-3-hydroxy-LSD, in urine and blood. J Anal Toxicol 24(7):543–549 CASPubMed Google Scholar
Sklerov J, Levine B, Moore KA, King T, Fowler D (2005) A fatal intoxication following the ingestion of 5-methoxy-N,_N_-dimethyltryptamine in an ayahuasca preparation. J Anal Toxicol 29(8):838–841 CASPubMed Google Scholar
Smith RL, Canton H, Barrett RJ, Sanders-Bush E (1998) Agonist properties of N,_N_-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors. Pharmacol Biochem Behav 61(3):323–330 CASPubMed Google Scholar
Smith RL, Barrett RJ, Sanders-Bush E (1999) Mechanism of tolerance development to 2,5-dimethoxy-4-iodoamphetamine in rats: down-regulation of the 5-HT2A, but not 5-HT2C, receptor. Psychopharmacology 144(3):248–254 CASPubMed Google Scholar
Smith RL, Barrett RJ, Sanders-Bush E (2003) Discriminative stimulus properties of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane [(±)DOI] in C57BL/6J mice. Psychopharmacology 166(1):61–68. doi:10.1007/s00213-002-1252-6 CASPubMed Google Scholar
Smith DE, Raswyck GE, Davidson LD (2014) From Hofmann to the Haight Ashbury, and into the future: the past and potential of lysergic acid diethylamide. J Psychoact Drugs 46(1):3–10. doi:10.1080/02791072.2014.873684 Google Scholar
Smolinske SC, Rastogi R, Schenkel S (2005) Foxy methoxy: a new drug of abuse. J Med Toxicol 1(1):22–25 PubMed Google Scholar
Sticht G, Kaferstein H (2000) Detection of psilocin in body fluids. Forensic Sci Int 113(1–3):403–407 CASPubMed Google Scholar
Strassman RJ (2001) DMT: the spirit molecule: a doctor's revolutionary research into the biology of near-death and mystical experiences. Park Street Press, Rochester
Strassman RJ, Qualls CR (1994) Dose-response study of N,_N_-dimethyltryptamine in humans. I. Neuroendocrine, autonomic, and cardiovascular effects. Arch Gen Psychiatry 51(2):85–97 CASPubMed Google Scholar
Strassman RJ, Qualls CR, Uhlenhuth EH, Kellner R (1994) Dose-response study of N,_N_-dimethyltryptamine in humans. II. Subjective effects and preliminary results of a new rating scale. Arch Gen Psychiatry 51(2):98–108 CASPubMed Google Scholar
Strassman RJ, Qualls CR, Berg LM (1996) Differential tolerance to biological and subjective effects of four closely spaced doses of N,_N_-dimethyltryptamine in humans. Biol Psychiatry 39(9):784–795. doi:10.1016/0006-3223(95)00200-6 CASPubMed Google Scholar
Szara S (1956) Dimethyltryptamin: its metabolism in man; the relation to its psychotic effect to the serotonin metabolism. Experientia 12(11):441–442 CASPubMed Google Scholar
Taljemark J, Johansson BA (2012) Drug-induced acute psychosis in an adolescent first-time user of 4-HO-MET. Eur Child Adolesc Psychiatry 21(9):527–528. doi:10.1007/s00787-012-0282-9 PubMed Google Scholar
Tanaka E, Kamata T, Katagi M, Tsuchihashi H, Honda K (2006) A fatal poisoning with 5-methoxy-N,_N_-diisopropyltryptamine, Foxy. Forensic Sci Int 163(1–2):152–154. doi:10.1016/j.forsciint.2005.11.026 CASPubMed Google Scholar
Titeler M, Lyon RA, Glennon RA (1988) Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology 94(2):213–216 CASPubMed Google Scholar
Tsuchiya H, Yamada K, Tajima K, Hayashi T (1996) Urinary excretion of tetrahydro-beta-carbolines relating to ingestion of alcoholic beverages. Alcohol Alcohol 31(2):197–203 CASPubMed Google Scholar
Turner DM (1994) The essential psychadelic handbook. Panther Press, San Francisco Google Scholar
Twarog BM, Page IH (1953) Serotonin content of some mammalian tissues and urine and a method for its determination. Am J Physiol 175(1):157–161 CASPubMed Google Scholar
Vorce SP, Sklerov JH (2004) A general screening and confirmation approach to the analysis of designer tryptamines and phenethylamines in blood and urine using GC–EI–MS and HPLC-electrospray-MS. J Anal Toxicol 28(6):407–410 CASPubMed Google Scholar
Walters JK, Sheard MH, Davis M (1978) Effects of N,_N_-dimethyltryptamine (DMT) and 5-methoxy-N,_N_-dimethyltryptamine (5-MeODMT) on shock elicited fighting in rats. Pharmacol Biochem Behav 9(1):87–90 CASPubMed Google Scholar
Weil AT, Davis W (1994) Bufo alvarius: a potent hallucinogen of animal origin. J Ethnopharmacol 41(1–2):1–8 CASPubMed Google Scholar
Wieland H, Konz W, Mittasch H (1934) Die konstitution von Bufotenin und Bufotenidin. Über kröten-Giftstoffe. VII. Justus Liebigs Ann Chem 513(1):1–25 CAS Google Scholar
Williams MT, Herring NR, Schaefer TL et al (2007) Alterations in body temperature, corticosterone, and behavior following the administration of 5-methoxy-diisopropyltryptamine (‘foxy’) to adult rats: a new drug of abuse. Neuropsychopharmacology 32(6):1404–1420. doi:10.1038/sj.npp.1301232 CASPubMed Google Scholar
Winstock AR, Kaar S, Borschmann R (2014) Dimethyltryptamine (DMT): prevalence, user characteristics and abuse liability in a large global sample. J Psychopharmacol 28(1):49–54. doi:10.1177/0269881113513852 PubMed Google Scholar
Winter JC, Filipink RA, Timineri D, Helsley SE, Rabin RA (2000) The paradox of 5-methoxy-N,_N_-dimethyltryptamine: an indoleamine hallucinogen that induces stimulus control via 5-HT1A receptors. Pharmacol Biochem Behav 65(1):75–82 CASPubMed Google Scholar
Winter JC, Eckler JR, Rabin RA (2004) Serotonergic/glutamatergic interactions: the effects of mGlu2/3 receptor ligands in rats trained with LSD and PCP as discriminative stimuli. Psychopharmacology 172(2):233–240. doi:10.1007/s00213-003-1636-2 CASPubMed Google Scholar
Wolbach AB Jr, Isbell H, Miner EJ (1962) Cross tolerance between mescaline and LSD-25, with a comparison of the mescaline and LSD reactions. Psychopharmacologia 3:1–14 CASPubMed Google Scholar
Wurst M, Kysilka R, Flieger M (2002) Psychoactive tryptamines from basidiomycetes. Folia Microbiol 47(1):3–27 CAS Google Scholar