Therapeutic potential of positive AMPA modulators and their relationship to AMPA receptor subunits. A review of preclinical data (original) (raw)
References
Anis NA, Berry SC, Burton NR, Lodge D (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 79(2):565–575 Google Scholar
Arai A, Kessler M, Xiao P, Ambros-Ingerson J, Rogers G, Lynch G (1994) A centrally active drug that modulates AMPA receptor gated currents. Brain Res 638(1–2):343–346 Article Google Scholar
Arai A, Guidotti A, Costa E, Lynch G (1996) Effect of the AMPA receptor modulator IDRA 21 on LTP in hippocampal slices. NeuroReport 7(13):2211–2215 Google Scholar
Arai AC, Xia YF, Suzuki E (2004) Modulation of AMPA receptor kinetics differentially influences synaptic plasticity in the hippocampus. Neuroscience 123(4):1011–1024 Google Scholar
Bai F, Li X, Clay M, Lindstrom T, Skolnick P (2001) Intra- and interstrain differences in models of “behavioral despair”. Pharmacol Biochem Behav 70(2–3):187–192 ArticleCASPubMed Google Scholar
Bartolini L, Risaliti R, Pepeu G (1992) Effect of scopolamine and nootropic drugs on rewarded alternation in a T-maze. Pharmacol Biochem Behav 43(4):1161–1164 Article Google Scholar
Baumbarger PJ, Muhlhauser M, Zhai J, Yang CR, Nisenbaum ES (2001) Positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors in prefrontal cortical pyramidal neurons by a novel allosteric potentiator. J Pharmacol Exp Ther 298(1):86–102 Google Scholar
Beneyto M, Meador-Woodruff JH (2004) Expression of transcripts encoding AMPA receptor subunits and associated postsynaptic proteins in the macaque brain. J Comp Neurol 468(4):530–554 Article Google Scholar
Bertolino M, Baraldi M, Parenti C, Braghiroli D, DiBella M, Vicini S, Costa E (1993) Modulation of AMPA/kainate receptors by analogues of diazoxide and cyclothiazide in thin slices of rat hippocampus. Recept Channels 1(4):267–278 Google Scholar
Bigge CF, Nikam SS (1997) AMPA receptor agonists, antagonists and modulators—their potential for clinical utility. Expert Opin Ther Pat 7(10):1099–1114 Google Scholar
Black MD, Wotanis J, Schilp DE, Hanak SE, Sorensen SM, Wettstein JG (2000) Effect of AMPA receptor modulators on hippocampal and cortical function. Eur J Pharmacol 394:85–90 Article Google Scholar
Boulter J, Hollmann M, O’Shea-Greenfield A, Hartley M, Deneris, E, Maron, C, Heinemann S (1990) Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249(4972):1033–1037 Google Scholar
Boxall AR, Garthwaite J (1995) Synaptic excitation mediated by AMPA receptors in rat cerebellar slices is selectively enhanced by aniracetam and cyclothiazide Neurochem Res 20(5):605–609 Google Scholar
Brene S, Messer C, Nestler EJ (1998) Expression of messenger RNAs encoding ionotropic glutamate receptors in rat brain: regulation by haloperidol. Neuroscience 84(3):813–823 Google Scholar
Brorson JR, Li D, Suzuki T (2004) Selective expression of heteromeric AMPA receptors driven by flip-flop differences. J Neurosci 24(14):3461–3470 Google Scholar
Buccafusco JJ, Weiser T, Winter K, Klinder K, Terry AV (2004) The effects of IDRA 21, a positive modulator of the AMPA receptor, on delayed matching performance by young and aged rhesus monkeys. Neuropharmacology 46(1):10–22 Article Google Scholar
Burnashev N, Monyer H, Seeburg PH, Sakmann B (1992) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8(1):189–198 ArticleCASPubMed Google Scholar
Carroll RC, Beattie EC, von Zastrow M, Malenka RC (2001) Role of AMPA receptor endocytosis in synaptic plasticity. Nat Rev, Neurosci 2(5):315–324 Google Scholar
Chapman AG, al-Zubaidy Z, Meldrum BS (1993) Aniracetam reverses the anticonvulsant action of NBQX and GYKI 52466 in DBA/2 mice. Eur J Pharmacol 231(2):301–303 Article Google Scholar
Chazot PL (2004) The NMDA receptor NR2B subunit: a valid therapeutic target for multiple CNS pathologies. Curr Med Chem 11(3):389–396 Google Scholar
Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1(8):623–634 CASPubMed Google Scholar
Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11(3):327–335 ArticleCASPubMed Google Scholar
Cumin R, Bandle EF, Gamzu E, Haefely WE (1982) Effects of the novel compound aniracetam (Ro 13-5057) upon impaired learning and memory in rodents. Psychopharmacology (Berl) 78(2):104–111 Article Google Scholar
Davis CM, Moskovitz B, Nguyen MA, Tran BB, Arai A, Lynch G, Granger R (1997) A profile of the behavioral changes produced by facilitation of AMPA-type glutamate receptors. Psychopharmacology (Berl) 133(2):161–167 Article Google Scholar
De Sarro G, Siniscalchi A, Ferreri G, Gallelli L, De Sarro A (2000) NMDA and AMPA/kainate receptors are involved in the anticonvulsant activity of riluzole in DBA/2 mice. Eur J Pharmacol 10:408(1):25–34 Article Google Scholar
Dicou E, Rangon CM, Guimiot F, Spedding M, Gressens P (2003) Positive allosteric modulators of AMPA receptors are neuroprotective against lesions induced by an NMDA agonist in neonatal mouse brain. Brain Res 970(1–2):221–225 Article Google Scholar
Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81(3):163–221 Article Google Scholar
Dudkin KN, Kruchinin VK, Chueva IV (1997) Synchronization processes in the mechanisms of short-term memory in monkeys: the involvement of cholinergic and glutaminergic cortical structures. Neurosci Behav Physiol 27:303–308 Google Scholar
Eastwood SL, Burnet PW, Harrison PJ (1997) GluR2 glutamate receptor subunit flip and flop isoforms are decreased in the hippocampal formation in schizophrenia: a reverse transcriptase–polymerase chain reaction (RT-PCR) study. Brain Res Mol Brain Res 44(1):92–98 Article Google Scholar
Fletcher EJ, Lodge D (1996) New developments in the molecular pharmacology of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate and kainate receptors. Pharmacol Ther 70(1):65–89 Article Google Scholar
Frith C, Dolan R (1996) The role of the prefrontal cortex in higher cognitive functions. Cogn Brain Res 5:175–181 Article Google Scholar
Frye GD, Fincher A (2000) Sustained ethanol inhibition of native AMPA receptors on medial septum/diagonal band (MS/DB) neurons. Br J Pharmacol 129(1):87–94 Google Scholar
Gates M, Ogden A, Bleakman D (2001) Pharmacological effects of AMPA receptor potentiators LY392098 and LY404187 on rat neuronal AMPA receptors in vitro. Neuropharmacology 40(8):984–991 Google Scholar
Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15(1):193–204 ArticleCASPubMed Google Scholar
Goff DC, Leahy L, Berman I, Posever T, Herz L, Leon AC, Johnson SA, Lynch G (2001) A placebo-controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. J Clin Psychopharmacol 21(5):484–487 Google Scholar
Goldman-Rakic PS (1994) Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 6:348–357 Google Scholar
Granger R, Stäubli U, Davis M, Perez Y, Nilsson L, Rogers GA, Lynch G (1993) A drug that facilitates glutamatergic transmission reduces exploratory activity and improves performance in a learning-dependent task. Synapse 15(4):326–329 Article Google Scholar
Hampson RE, Rogers G, Lynch G, Deadwyler SA (1998a) Facilitative effects of the ampakine CX516 on short-term memory in rats: correlations with hippocampal neuronal activity. J Neurosci 18(7):2748–2763 Google Scholar
Hampson RE, Rogers G, Lynch G, Deadwyler SA (1998b) Facilitative effects of the ampakine CX516 on short-term memory in rats: enhancement of delayed-nonmatch-to-sample performance. J Neurosci 18(7):2740–2747 Google Scholar
Harrison NL, Simmonds MA (1985) Quantitative studies on some antagonists of N-methyl-D-aspartate in slices of rat cerebral cortex. Br J Pharmacol 84(2):381–391 Google Scholar
Hashimoto K, Shimizu E, Iyo M (2004) Critical role of brain-derived neurotrophic factor in mood disorders. Brain Res Brain Res Rev 45(2):104–114 ArticleCASPubMed Google Scholar
Hayashi T, Umemori H, Mishina M, Yamamoto T (1999) The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn. Nature 7:397(6714):72–76 Google Scholar
Hennegriff M, Arai A, Kessler M, Vanderklish P, Mutneja MS, Rogers G, Neve RL, Lynch G (1997) Stable expression of recombinant AMPA receptor subunits: binding affinities and effects of allosteric modulators. J Neurochem 68(6):2424–2434 Google Scholar
Hollmann M, O’Shea-Greenfield A, Rogers SW, Heinemann S (1989) Cloning by functional expression of a member of the glutamate receptor family. Nature 342(6250):643–648 Article Google Scholar
Hori M, Iemura R, Hara H, Sukamoto T, Ito K, Ohtaka H (1991) Potential nootropic agents, 4-alkoxy-2-(1-piperazinyl)quinazoline derivatives. Chem Pharm Bull (Tokyo) 39(2):367–371 Google Scholar
Hume RI, Dingledine R, Heinemann SF (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253(5023):1028–1031 CASPubMed Google Scholar
Ingvar M, Ambros-Ingerson J, Davis M, Granger R, Kessler M, Rogers GA, Schehr RS, Lynch G (1997) Enhancement by an ampakine of memory encoding in humans. Exp Neurol 146(2):553–559 Article Google Scholar
Ito I, Tanabe S, Kohda A, Sugiyama H (1990) Allosteric potentiation of quisqualate receptors by a nootropic drug aniracetam.J Physiol 424:533–543 Google Scholar
Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308 CASPubMed Google Scholar
Johansen TH, Chaudhary A, Verdoorn TA (1995) Interactions among GYKI-52466, cyclothiazide, and aniracetam at recombinant AMPA and kainate receptors. Mol Pharmacol 48(5):946–955 Google Scholar
Johnson SA, Luu NT, Herbst TA, Knapp R, Lutz D, Arai A, Rogers GA, Lynch G (1999) Synergistic interactions between ampakines and antipsychotic drugs. J Pharmacol Exp Ther 289(1):392–397 Google Scholar
Keinanen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249(4968):556–560 Google Scholar
Kessler M, Mutneja MS, Rogers G, Lynch G (1998) Regional preferences of AMPA receptor modulators determined through agonist binding autoradiography. Brain Res 783(1):121–126 Article Google Scholar
Kimball JR, Johnson JA, Griffey KL, Ornstein PL, Zimmerman DM, Zarrinmayeh H, Schoepp DD, Tizzano JP (2000) The novel AMPA receptor potentiator, LY392098, enhances spatial learning and memory in a water maze. Abstr-Soc Neurosci 26:528.19 Google Scholar
Knapp RJ, Goldenberg R, Shuck C, Cecil A, Watkins J, Miller C, Crites G, Malatynska E (2002) Antidepressant activity of memory-enhancing drugs in the reduction of submissive behavior model. Eur J Pharmacol 440(1):27–35 Article Google Scholar
Koch HJ, Szecsey A, Haen E (2004) NMDA-antagonism (memantine): an alternative pharmacological therapeutic principle in Alzheimer’s and vascular dementia. Curr Pharm Des 10(3):253–259 Google Scholar
Koike M, Tsukada S, Tsuzuki K, Kijima H, Ozawa S (2000) Regulation of kinetic properties of GluR2 AMPA receptor channels by alternative splicing. J Neurosci 20:2166–2174 Google Scholar
Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214 CASPubMed Google Scholar
Krystal JH, D’Souza DC, Karper LP, Bennett A, Abi-Dargham A, Abi-Saab D, Cassello K, Bowers MB Jr, Vegso S, Heninger GR, Charney DS (1999a) Interactive effects of subanesthetic ketamine and haloperidol in healthy humans. Psychopharmacologia 145(2):193–204 Article Google Scholar
Krystal JH, D’Souza DC, Petrakis IL, Belger A, Berman RM, Charney DS, Abi-Saab W, Madonick S (1999b) NMDA agonists and antagonists as probes of glutamatergic dysfunction and pharmacotherapies in neuropsychiatric disorders. Harv Rev Psychiatr 7(3):125–143 ArticleCASPubMed Google Scholar
Lambolez B, Ropert N, Perrais D, Rossier J, Hestrin S (1996) Correlation between kinetics and RNA splicing of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in neocortical neurons. Proc Natl Acad Sci U S A 93(5):1797–1802 Article Google Scholar
Larson J, Le T, Hall RA, Lynch G (1994) Effects of cyclothiazide on synaptic responses in slices of adult and neonate rat hippocampus. NeuroReport 5:389–392 Google Scholar
Larson J, Quach CN, LeDuc BQ, Nguyen A, Rogers GA, Lynch G (1996) Effects of an AMPA receptor modulator on methamphetamine-induced hyperactivity in rats. Brain Res 738(2):353–356 Article Google Scholar
Lauterborn JC, Lynch G, Vanderklish P, Arai A, Gall CM (2000) Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J Neurosci 20(1):8–21 Google Scholar
Lauterborn JC, Truong GS, Baudry M, Bi X, Lynch G, Gall CM (2003) Chronic elevation of brain-derived neurotrophic factor by ampakines. J Pharmacol Exp Ther 307(1):297–305 Article Google Scholar
Lee CR, Benfield P (1994) Aniracetam. An overview of its pharmacodynamic and pharmacokinetic properties, and a review of its therapeutic potential in senile cognitive disorders. Drugs Aging 4(3):257–273 Google Scholar
Liddle PF (1992) Syndromes of schizophrenia on factor analysis. Br J Psychiatry 161:861 Google Scholar
Lomeli H, Mosbacher J, Melcher T, Hoger T, Geiger JR, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg PH (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266(5191):1709–1713 CASPubMed Google Scholar
Luby E, Cohen B, Rosenbaum G, Gottlieb J, Kelley R (1959) Study of a new schizophrenomimetic drug—Sernyl. AMA Arch Neurol Psych 81:363–369 Google Scholar
Lynch G (2004) AMPA receptor modulators as cognitive enhancers. Curr Opin Pharmacol 4(1):4–11 Article Google Scholar
Lynch G, Baudry M (1984) The biochemistry of memory: a new and specific hypothesis.Science 8;224(4653):1057–1063 Google Scholar
Lynch DR, Guttmann RP (2001) NMDA receptor pharmacology: perspectives from molecular biology. Curr Drug Targets 2(3):215–231 Google Scholar
Lynch G, Kessler M, Rogers G, Ambros-Ingerson J, Granger R, Schehr RS (1996) Psychological effects of a drug that facilitates brain AMPA receptors. Int Clin Psychopharmacol 11(1):13–19 Google Scholar
Lynch G, Granger R, Ambros-Ingerson J, Davis CM, Kessler M, Schehr R (1997) Evidence that a positive modulator of AMPA-type glutamate receptors improves delayed recall in aged humans. Exp Neurol 145(1):89–92 Article Google Scholar
Mackowiak M, O’Neill MJ, Hicks CA, Bleakman D, Skolnick P (2002) An AMPA receptor potentiator modulates hippocampal expression of BDNF: an in vivo study. Neuropharmacology 43(1):1–10 Google Scholar
Malenka RC (1991) The role of postsynaptic calcium in the induction of long-term potentiation. Mol Neurobiol 5(2–4):289–295 Google Scholar
Malenka RC (2003) Synaptic plasticity and AMPA receptor trafficking. Ann NY Acad Sci 1003:1–11 Google Scholar
Malinow R (2003) AMPA receptor trafficking and long-term potentiation. Philos Trans R Soc Lond, B Biol Sci 358(1432):707–714 Google Scholar
Marenco S, Egan MF, Goldberg TE, Knable MB, McClure RK, Winterer G, Weinberger DR (2002) Preliminary experience with an ampakine (CX516) as a single agent for the treatment of schizophrenia: a case series. Schizophr Res 57(2–3):221–226 Article Google Scholar
Martin JR, Cumin R, Aschwanden W, Moreau JL, Jenck F, Haefely WE (1992) Aniracetam improves radial maze performance in rats. NeuroReport 3(1):81–83 Google Scholar
Meador-Woodruff JH, Healy DJ (2000) Glutamate receptor expression in schizophrenic brain. Brain Res Brain Res Rev 31(2–3):288–294 Article Google Scholar
Miu P, Jarvie KR, Radhakrishnan V, Gates MR, Ogden A, Ornstein PL, Zarrinmayeh H, Ho K, Peters D, Grabell J, Gupta A, Zimmerman DM, Bleakman D (2001) Novel AMPA receptor potentiators LY392098 and LY404187: effects on recombinant human AMPA receptors in vitro. Neuropharmacology 40(8):976–983 Article Google Scholar
Mohler H, Fritschy JM, Rudolph U (2002) A new benzodiazepine pharmacology. J Pharmacol Exp Ther 300(1):2–8 Article Google Scholar
Monyer H, Seeburg PH, Wisden W (1991) Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 6(5):799–810 Article Google Scholar
Mosbacher J, Schoepfer R, Monyer H, Burnashev N, Seeburg PH, Ruppersberg JP (1994) A molecular determinant for submillisecond desensitization in glutamate receptors.Science 266(5187):1059–1062 Google Scholar
Murray TK, Whalley K, Robinson CS, Ward MA, Hicks CA, Lodge D, Vandergriff JL, Baumbarger P, Siuda E, Gates M, Ogden AM, Skolnick P, Zimmerman DM, Nisenbaum ES, Bleakman D, O’Neill MJ (2003) LY503430, a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor potentiator with functional, neuroprotective and neurotrophic effects in rodent models of Parkinson’s disease. J Pharmacol Exp Ther 306(2):752–762 Article Google Scholar
Nagarajan N, Quast C, Boxall AR, Shahid M, Rosenmund C (2001) Mechanism and impact of allosteric AMPA receptor modulation by the ampakine CX546. Neuropharmacology 41(6):650–663 Article Google Scholar
Nakamura K, Kurasawa M (2000) Serotonergic mechanisms involved in the attentional and vigilance task performance of rats and the palliative action of aniracetam. Naunyn-Schmiedeberg’s Arch Pharmacol 361(5):521–528 Article Google Scholar
Nakamura K (2002) Aniracetam: its novel therapeutic potential in cerebral dysfunctional disorders based on recent pharmacological discoveries. CNS Drug Rev 8(1):70–89 Google Scholar
Nakamura K, Kurasawa M (2001) Anxiolytic effects of aniracetam in three different mouse models of anxiety and the underlying mechanism. Eur J Pharmacol 420(1):33–43 Article Google Scholar
Nakamura K, Tanaka Y (2001) Antidepressant-like effects of aniracetam in aged rats and its mode of action. Psychopharmacology (Berl) 158(2):205–212 Article Google Scholar
Nakamura K, Kurasawa M, Tanaka Y (1998a) Apomorphine-induced hypoattention in rats and reversal of the choice performance impairment by aniracetam. Eur J Pharmacol 342:127–138 Article Google Scholar
Nakamura K, Kurasawa M, Tanaka Y (1998b) Scopolamine model of delirium in rats and reversal of the performance impairment by aniracetam. Drug Dev Res 43:85–97 Article Google Scholar
Nakamura K, Kurasawa M, Shirane M (2000) Impulsivity and AMPA receptors: aniracetam ameliorates impulsive behavior induced by a blockade of AMPA receptors in rats. Brain Res 862(1–2):266–269 Article Google Scholar
Ogasawara T, Itoh Y, Tamura M, Mushiroi T, Ukai Y, Kise M, Kimura K (1999) Involvement of cholinergic and GABAergic systems in the reversal of memory disruption by NS-105, a cognition enhancer. Pharmacol Biochem Behav 64(1):41–52 Article Google Scholar
Ohno M, Yamamoto T, Kitajima I, Ueki S (1990) WEB 1881 FU ameliorates impairment of working memory induced by scopolamine and cerebral ischemia in the three-panel runway task. Jpn J Pharmacol 54(1):53–60 Google Scholar
Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 33(6):523–533 ArticleCASPubMed Google Scholar
O’Neill MJ, Murray TK, Whalley K, Ward MA, Hicks CA, Woodhouse S, Osborne DJ, Skolnick P (2004) Neurotrophic actions of the novel AMPA receptor potentiator, LY404187, in rodent models of Parkinson’s disease. Eur J Pharmacol 486(2):163–174 ArticleCASPubMed Google Scholar
Park Y, Jang CG, Yang KH, Loh HH, Ma T, Ho IK (2003) Regional specific increases of [3H]AMPA binding and mRNA expression of AMPA receptors in the brain of mu-opioid receptor knockout mice. Brain Res Mol Brain Res 113(1–2):116–123 Article Google Scholar
Partin KM, Patneau DK, Mayer ML (1994) Cyclothiazide differentially modulates desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor splice variants. Mol Pharmacol 46(1):129–138 Google Scholar
Petralia RS, Wenthold RJ (1992) Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J Comp Neurol 318:329–354 Article Google Scholar
Pontecorvo MJ, Evans HL (1985) Effects of aniracetam on delayed matching-to-sample performance of monkeys and pigeons. Pharmacol Biochem Behav 22(5):745–752 Article Google Scholar
Quirk JC, Nisenbaum ES (2002) LY404187: a novel positive allosteric modulator of AMPA receptors. CNS Drug Rev 8(3):255–282 Google Scholar
Quirk JC, Nisenbaum ES (2003) Multiple molecular determinants for allosteric modulation of alternatively spliced AMPA receptors. J Neurosci 2623(34):10953–10962 Google Scholar
Rao Y, Xiao P, Xu S (2001) Effects of intrahippocampal aniracetam treatment on Y-maze avoidance learning performance and behavioral long-term potentiation in dentate gyrus in rat. Neurosci Lett 298(3):183–186 Article Google Scholar
Rogan MT, Stäubli UV, LeDoux JE (1997) AMPA receptor facilitation accelerates fear learning without altering the level of conditioned fear acquired. J Neurosci 17(15):5928–5935 Google Scholar
Romanides AJ, Duffy P, Kalivas PW (1999) Glutamatergic and dopaminergic afferents to the prefrontal cortex regulate spatial working memory in rats. Neuroscience 92:97–106 Article Google Scholar
Rosa ML, Guimaraes FS, Pearson RC, Del Bel EA (2002) Effects of single or repeated restraint stress on GluR1 and GluR2 flip and flop mRNA expression in the hippocampal formation. Brain Res Bull 59(2):117–124 Google Scholar
Satoh M, Ishihara K, Iwama T, Takagi H (1986) Aniracetam augments, and midazolam inhibits, the long-term potentiation in guinea-pig hippocampal slices. Neurosci Lett 68(2):216–220 Article Google Scholar
Sekiguchi M, Yamada K, Jin J, Hachitanda M, Murata Y, Namura S, Kamichi S, Kimura I, Wada K (2001) The AMPA receptor allosteric potentiator PEPA ameliorates post-ischemic memory impairment. NeuroReport 12(13):2947–2950 Article Google Scholar
Shors TJ, Servatius RJ, Thompson RF, Rogers G, Lynch G (1995) Enhanced glutamatergic neurotransmission facilitates classical conditioning in the freely moving rat. Neurosci Lett 186(2–3):153–156 Article Google Scholar
Siegel GJ, Chauhan NB (2000) Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res Brain Res Rev 33(2–3):199–227 Article Google Scholar
Smith PF (2003) Therapeutic N-methyl-D-aspartate receptor antagonists: will reality meet expectation? Curr Opin Investig Drugs 4(7):826–832 Google Scholar
Sommer B, Seeburg PH (1992) Glutamate receptor channels: novel properties and new clones. Trends Pharmacol Sci 13(7):291–296 Article Google Scholar
Sommer B, Keinanen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Kohler M, Takagi T, Sakmann B, Seeburg PH (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249(4976):1580–1585 Google Scholar
Stäubli U, Ambros-Ingerson J, Lynch G (1992) Receptor changes and LTP: an analysis using aniracetam, a drug that reversibly modifies glutamate (AMPA) receptors. Hippocampus 2(1):49–57 Google Scholar
Stäubli U, Rogers G, Lynch G (1994) Facilitation of glutamate receptors enhances memory. Proc Natl Acad Sci U S A 91(2):777–781 Google Scholar
Stein E, Cox JA, Seeburg PH, Verdoorn TA (1992) Complex pharmacological properties of recombinant alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subtypes. Mol Pharmacol 42(5):864–871 Google Scholar
Stine CD, Lu W, Wolf ME (2001) Expression of AMPA receptor flip and flop mRNAs in the nucleus accumbens and prefrontal cortex after neonatal ventral hippocampal lesions. Neuropsychopharmacology 24(3):253–266 ArticleCASPubMed Google Scholar
Suzuki T, Tsuzuki K, Kameyama K, Kwak S (2003) Recent advances in the study of AMPA receptors. Nippon Yakurigaku Zasshi 122(6):515–526 Google Scholar
Tallaksen-Greene SJ, Albin RL (1996) Splice variants of glutamate receptor subunits 2 and 3 in striatal projection neurons. Neuroscience 75(4):1057–1064 Article Google Scholar
Teyler TJ, Cavus I, Coussens C, DiScenna P, Grover L, Lee YP, Little Z (1994) Multideterminant role of calcium in hippocampal synaptic plasticity. Hippocampus 4(6):623–634 Google Scholar
Thompson DM, Guidotti A, DiBella M, Costa E (1995) 7-Chloro-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine S,S-dioxide (IDRA 21), a congener of aniracetam, potently abates pharmacologically induced cognitive impairments in patas monkeys. Proc Natl Acad Sci U S A 92(17):7667–7671 Google Scholar
Tizzano JP, Kimball JR, Johnson JA, Griffey KL (2000) The novel AMPA receptor potentiator, LY392098, reverses pharmacologically and age-induced memory deficits in rats. Abstr-Soc Neurosci 26:528.20 Google Scholar
Togashi H, Nakamura K, Matsumoto M, Ueno K, Ohashi S, Saito H, Yoshioka M (2002) Aniracetam enhances glutamatergic transmission in the prefrontal cortex of stroke-prone spontaneously hypertensive rats. Neurosci Lett 320(3):109–112 Article Google Scholar
Tomiyama M, Palacios JM, Cortes R, Mengod G (1999) Flip and flop variants of AMPA receptor subunits in the human cerebellum: implication for the selective vulnerability of Purkinje cells. Synapse 31(2):163–167 Google Scholar
Vandergriff J, Huff K, Bond A, Lodge D (2001) Potentiation of responses to AMPA on central neurones by LY392098 and LY404187 in vivo. Neuropharmacology 40(8):1003–1009 Article Google Scholar
Vanover KE (1997) Effects of AMPA receptor positive modulators on amphetamine- and dizocilpine-induced locomotion. Eur J Pharmacol 332(2):115–119 Article Google Scholar
Weinberger D, Berman KF (1996) Prefrontal function in schizophrenia: confounds and controversies. Philos Trans R Soc Lond, B Biol Sci 351:1495–1503 Google Scholar
Whiting PJ (2003) GABA-A receptor subtypes in the brain: a paradigm for CNS drug discovery? Drug Discov Today 8(10):445–450 Article Google Scholar
Yamada K (1998) Modulating excitatory synaptic neurotransmission: potential treatment for neurological disease? Neurobiol Dis 5:67–80 Article Google Scholar
Zajaczkowski W, Danysz W (1997) Effects of D-cycloserine and aniracetam on spatial learning in rats with entorhinal cortex lesions. Pharmacol Biochem Behav 56(1):21–29 Article Google Scholar
Zavitsanou K, Ward PB, Huang XF (2002) Selective alterations in ionotropic glutamate receptors in the anterior cingulate cortex in schizophrenia. Neuropsychopharmacology 27(5):826–833 Article Google Scholar
Zeng L, Lu L, Muller M, Gouaux E, Zhou MM (2002) Structure-based functional design of chemical ligands for AMPA-subtype glutamate receptors. J Mol Neurosci 19(1–2):113–116 Google Scholar
Zeng L, Chen CH, Muller M, Zhou MM (2003) Structure-based rational design of chemical ligands for AMPA-subtype glutamate receptors. J Mol Neurosci 20(3):345–348 Article Google Scholar
Zivkovic I, Thompson DM, Bertolino M, Uzunov D, DiBella M, Costa E, Guidotti A (1995) 7-Chloro-3-methyl-3-4-dihydro-2H-1,2,4 benzothiadiazine S,S-dioxide (IDRA 21): a benzothiadiazine derivative that enhances cognition by attenuating DL-alpha-amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazolepropanoic acid (AMPA) receptor desensitization. J Pharmacol Exp Ther 272(1):300–309 Google Scholar