Roles of D1-like dopamine receptors in the nucleus accumbens and dorsolateral striatum in conditioned avoidance responses (original) (raw)
Aguilar MA, Mari-Sanmillan MI, Morant-Deusa JJ, Minarro J (2000) Different inhibition of conditioned avoidance response by clozapine and DA D-1 and D-2 antagonists in male mice. Behav Neurosci 114:389–400 ArticlePubMedCAS Google Scholar
Alexander GE, Crutcher MD, Delong MR (1990) Basal ganglia–thalamocortical circuits — parallel substrates for motor, oculomotor, prefrontal and limbic functions. Prog Brain Res 85:119–146 ArticlePubMedCAS Google Scholar
Balleine BW, O’Doherty JP (2010) Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35:48–69 ArticlePubMed Google Scholar
Beninger RJ, Rolfe NG (1995) Dopamine D1-like receptor agonists impair responding for conditioned reward in rats. Behav Pharmacol 6:785–793 ArticlePubMedCAS Google Scholar
Beninger RJ, Mason ST, Phillips AG, Fibiger HC (1980) The use of conditioned suppression to evaluate the nature of neuroleptic-induced avoidance deficits. J Pharmacol Exp Ther 213:623–627 PubMedCAS Google Scholar
Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 131:391–431 Article Google Scholar
Brischoux F, Chakraborty S, Brierley DI, Ungless MA (2009) Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci U S A 106:4893–4899 Article Google Scholar
Carlezon WA, Thomas MJ (2009) Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 56:122–132 ArticlePubMedCAS Google Scholar
Da Cunha C, Gevaerd MS, Vital M, Miyoshi E, Andreatini R, Silveira R, Takahashi RN, Canteras NS (2001) Memory disruption in rats with nigral lesions induced by MPTP: a model for early Parkinson’s disease amnesia. Behav Brain Res 124:9–18 ArticlePubMed Google Scholar
Da Cunha C, Wietzikoski EC, Dombrowski P, Santos LM, Bortolanza M, Boschen SL, Miyoshi E (2009) Learning processing in the basal ganglia: a mosaic of broken mirrors. Behav Brain Res 199:156–169 Google Scholar
Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114 ArticlePubMed Google Scholar
Ferreira JGP, Del-Fava F, Hasue RH, Shammah-Lagnado SJ (2008) Organization of ventral tegmental area projections to the ventral tegmental area–nigral complex in the rat. Neuroscience 153:196–213 ArticlePubMedCAS Google Scholar
Floresco SB, Phillips AG (1999) Dopamine and hippocampal input to the nucleus accumbens play an essential role in the search for food in an unpredictable environment. Psychobiology 27:277–286 CAS Google Scholar
Frank MJ, Seeberger LC, O’Reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306:1940–1943 ArticlePubMedCAS Google Scholar
Gal G, Schiller D, Weiner I (2005) Latent inhibition is disrupted by nucleus accumbens shell lesion but is abnormally persistent following entire nucleus accumbens lesion: the neural site controlling the expression and disruption of the stimulus preexposure effect. Behav Brain Res 162:246–255 ArticlePubMed Google Scholar
Gevaerd MS, Miyoshi E, Silveira R, Canteras NS, Takahashi RN, Da Cunha C (2001a) l-dopa restores striatal dopamine level but fails to reverse MPTP-induced memory deficits in rats. Int J Neuropsychopharmacol 4:361–370 ArticlePubMedCAS Google Scholar
Gevaerd MS, Takahashi RN, Silveira R, Da Cunha C (2001b) Caffeine reverses the memory disruption induced by intra-nigral MPTP-injection in rats. Brain Res Bull 55:101–106 ArticlePubMedCAS Google Scholar
Goto Y, Grace AA (2008) Limbic and cortical information processing in the nucleus accumbens. Trends Neurosci 31:552–558 ArticlePubMedCAS Google Scholar
Hernandez-Lopez S, Bargas J, Surmeier DJ, Reyes A, Galarraga E (1987) D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an l-type Ca2+ conductance. J Neurosci Methods 17:3334–3342 Google Scholar
Hikida T, Kimura K, Wada N, Funabiki K, Nakanishi S (2010) Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66:896–907 ArticlePubMedCAS Google Scholar
Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96:651–656 ArticlePubMedCAS Google Scholar
Iorio LC, Cohen M, Coffin VL (1991) Anticholinergic drugs potentiate dopamine D1 but not D2 antagonists on a conditioned avoidance task in rats. J Pharmacol Exp Ther 258:118–123 PubMedCAS Google Scholar
Izquierdo LA, Barros DM, da Costa JC, Furini C, Zinn C, Carnmarota M, Bevilaqua LR, Izquierdo I (2007) A link between role of two prefrontal areas in immediate memory and in long-term memory consolidation. Neurobiol Learn Mem 88:160–166 ArticlePubMed Google Scholar
LaLumiere RT, Nguyen LT, McGaugh JL (2004) Post-training intrabasolateral amygdala infusions of dopamine modulate consolidation of inhibitory avoidance memory: involvement of noradrenergic and cholinergic systems. Eur J Neurosci 20:2804–2810 ArticlePubMed Google Scholar
Lapointe NP, Guertin PA (2008) Synergistic effects of D-1/5 and 5-HT1a/7 receptor agonists on locomotor movement induction in complete spinal cord-transected mice. J Neurophysiol 100:160–168 ArticlePubMedCAS Google Scholar
Lorens SA, Sorensen JP, Harvey JA (1970) Lesions in nuclei accumbens septi of rat — behavioral and neurochemical effects. J Comp Physiol Psychol 73:284 ArticlePubMedCAS Google Scholar
Lovinger DM (2010) Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58:951–961 ArticlePubMedCAS Google Scholar
Maia TV (2010) Two-factor theory, the actor–critic model, and conditioned avoidance. Learn Behav 38:50–67 ArticlePubMed Google Scholar
Matamales M, Bertran-Gonzalez J, Salomon L, Degos B, Deniau JM, Valjent E, Herve D, Girault JA (2009) Striatal medium-sized spiny neurons: identification by nuclear staining and study of neuronal subpopulations in bac transgenic mice. PLoS One 4:e4770 ArticlePubMed Google Scholar
Matsumoto M, Hikosaka O (2009) Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459:838–842 Article Google Scholar
McGaugh JL, Roozendaal B (2009) Drug enhancement of memory consolidation: historical perspective and neurobiological implications. Psychopharmacology 202:3–14 ArticlePubMedCAS Google Scholar
McGeorge AJ, Faull RLM (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537 ArticlePubMedCAS Google Scholar
Morris G, Schmidt R, Bergman H (2010) Striatal action-learning based on dopamine concentration. Exp Brain Res 200:307–317 ArticlePubMed Google Scholar
Moutoussis M, Bentall RP, Williams J, Dayan P (2008) A temporal difference account of avoidance learning. Netw Comput Neural Syst 19:137–160 Article Google Scholar
Nauta WJH, Smith GP, Faull RLM, Domesick VB (1978) Efferent connections and nigral afferents of nucleus accumbens septi in rat. Neuroscience 3:385–401 ArticlePubMedCAS Google Scholar
Nicola SM (2007) The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology 191:521–550 ArticlePubMedCAS Google Scholar
Nicola SM, Surmeier DT, Malenka RC (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23:185–215 ArticlePubMedCAS Google Scholar
Ogren SO, Archer T (1994) Effects of typical and atypical antipsychotic-drugs on 2-way active-avoidance — relationship to DA receptor blocking profile. Psychopharmacology 114:383–391 ArticlePubMedCAS Google Scholar
Oliveira AR, Reimer AE, Brandao ML (2009) Role of dopamine receptors in the ventral tegmental area in conditioned fear. Behav Brain Res 199:271–277 ArticlePubMed Google Scholar
Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Academic Press, San Diego, EUA
Ragozzino ME, Ragozzino KE, Mizumori SJY, Kesner RP (2002) Role of the dorsomedial striatum in behavioral flexibility for response and visual cue discrimination learning. Behav Neurosci 116:105–115 ArticlePubMed Google Scholar
Redgrave P, Gurney K, Reynolds J (2008) What is reinforced by phasic dopamine signals? Brain Res Rev 58:322–339 ArticlePubMedCAS Google Scholar
Reis FLV, Masson S, de Oliveira AR, Brandao ML (2004) Dopaminergic mechanisms in the conditioned and unconditioned fear as assessed by the two-way avoidance and light switch-off tests. Pharmacol Biochem Behav 79:359–365 ArticlePubMedCAS Google Scholar
Rossato JI, Bevilaqua LRM, Izquierdo I, Medina JH, Cammarota M (2009) Dopamine controls persistence of long-term memory storage. Science 325:1017–1020 ArticlePubMedCAS Google Scholar
Schmidt HD, Pierce RC (2006) Cooperative activation of D1-like and D2-like dopamine receptors in the nucleus accumbens shell is required for the reinstatement of cocaine-seeking behavior in the rat. Neuroscience 142:451–461 ArticlePubMedCAS Google Scholar
Schultz W (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct 6:9 Article Google Scholar
Sesack SR, Grace AA (2010) Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47 ArticlePubMed Google Scholar
Shen WX, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321:848–851 ArticlePubMedCAS Google Scholar
Stuchlik A, Vales K (2006) Effect of dopamine D1 receptor antagonist SCH23390 and D1 agonist a77636 on active allothetic place avoidance, a spatial cognition task. Behav Brain Res 172:250–255 ArticlePubMedCAS Google Scholar
Surmeier DJ, Ding J, Day M, Wang ZF, Shen WX (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signalling in striatal medium spiny neurons. Trends Neurosci 30:228–235 ArticlePubMedCAS Google Scholar
Torras-Garcia M, Costa-Miserachs D, Morgado-Bernal I, Portell-Cortes I (2003) Improvement of shuttle-box performance by anterodorsal medial septal lesions in rats. Behav Brain Res 141:147–158 ArticlePubMed Google Scholar
Voorn P, Vanderschuren L, Groenewegen HJ, Robbins TW, Pennartz CMA (2004) Putting a spin on the dorsal–ventral divide of the striatum. Trends Neurosci 27:468–474 ArticlePubMedCAS Google Scholar
Wadenberg ML (1992) Antagonism by 8-OH-DPAT, but not ritanserin, of catalepsy induced by SCH-23390 in the rat. J Neural Transm Gen Sect 89:49–59 ArticlePubMedCAS Google Scholar
West AR, Grace AA (2002) Opposite influences of endogenous dopamine D-1 and D-2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J Neurosci 22:294–304 PubMedCAS Google Scholar
Wickens JR, Horvitz JC, Costa RM, Killcross S (2007) Dopaminergic mechanisms in actions and habits. J Neurosci 27:8181–8183 ArticlePubMedCAS Google Scholar
Wiecki TV, Frank MJ (2010) Neurocomputational models of motor and cognitive deficits in Parkinson’s disease. Recent advances in Parkinson’s disease: basic research. Prog Brain Res 183:275–297 ArticlePubMedCAS Google Scholar
Williams GV, Castner SA (2006) Under the curve: critical issues for elucidating D1 receptor function in working memory. Neuroscience 139:263–276 ArticlePubMedCAS Google Scholar
Wise RA (2008) Dopamine and reward: the anhedonia hypothesis 30 years on. Neurotox Res 14:69–83 Article Google Scholar
Woodruff ML, Fish BS, Alderman AO (1977) Epileptiform lesions in rat hippocampus and acquisition of 2-way avoidance. Physiol Behav 19:401–410 ArticlePubMedCAS Google Scholar
Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476 ArticlePubMedCAS Google Scholar
Yin HH, Knowlton BJ, Balleine BW (2006) Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning. Behav Brain Res 166:189–196 ArticlePubMed Google Scholar