Sex differences in novelty- and psychostimulant-induced behaviors of C57BL/6 mice (original) (raw)
Abarca C, Albrecht U, Spanagel R (2002) Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc Natl Acad Sci U S A 99:9026–9030 ArticlePubMedCAS Google Scholar
Adriani W, Laviola G (2000) A unique hormonal and behavioral hyporesponsivity to both forced novelty and d-amphetamine in periadolescent mice. Neuropharmacology 39:334–346 ArticlePubMedCAS Google Scholar
Anker JJ, Carroll ME (2011) Females are more vulnerable to drug abuse than males: evidence from preclinical studies and the role of ovarian hormones. Curr Top Behav Neurosci 8:73–96 ArticlePubMedCAS Google Scholar
Anker JJ, Zlebnik NE, Navin SF, Carroll ME (2011) Responding during signaled availability and nonavailability of IV cocaine and food in rats: age and sex differences. Psychopharmacology 215:785–799 ArticlePubMedCAS Google Scholar
Antoniou K, Kafetzopoulos E, Papadopoulou-Daifoti Z, Hyphantis T, Marselos M (1998) d-amphetamine, cocaine and caffeine: a comparative study of acute effects on locomotor activity and behavioural patterns in rats. Neurosci Biobehav Rev 23:189–196 ArticlePubMedCAS Google Scholar
Baird TJ, Gauvin D (2000) Characterization of cocaine self-administration and pharmacokinetics as a function of time of day in the rat. Pharmacol Biochem Behav 65:289–299 ArticlePubMedCAS Google Scholar
Beatty WW (1979) Gonadal hormones and sex differences in nonreproductive behaviors in rodents: organizational and activational influences. Horm Behav 12:112–163 ArticlePubMedCAS Google Scholar
Beatty WW, Holzer GA (1978) Sex differences in stereotyped behavior in the rat. Pharmacol Biochem Behav 9:777–783 ArticlePubMedCAS Google Scholar
Becker JB (1990) Direct effect of 17 beta-estradiol on striatum: sex differences in dopamine release. Synapse 5:157–164 ArticlePubMedCAS Google Scholar
Becker JB, Beer ME (1986) The influence of estrogen on nigrostriatal dopamine activity: behavioral and neurochemical evidence for both pre- and postsynaptic components. Behav Brain Res 19:27–33 ArticlePubMedCAS Google Scholar
Becker JB, Ramirez VD (1981) Sex differences in the amphetamine stimulated release of catecholamines from rat striatal tissue in vitro. Brain Res 204:361–372 ArticlePubMedCAS Google Scholar
Becker JB, Robinson TE, Lorenz KA (1982) Sex differences and estrous cycle variations in amphetamine-elicited rotational behavior. Eur J Pharmacol 80:65–72 ArticlePubMedCAS Google Scholar
Becker JB, Molenda H, Hummer DL (2001) Gender differences in the behavioral responses to cocaine and amphetamine. Implications for mechanisms mediating gender differences in drug abuse. Ann N Y Acad Sci 937:172–187 ArticlePubMedCAS Google Scholar
Bowman BP, Kuhn CM (1996) Age-related differences in the chronic and acute response to cocaine in the rat. Dev Psychobiol 29:597–611 ArticlePubMedCAS Google Scholar
Bowman BP, Vaughan SR, Walker QD, Davis SL, Little PJ, Scheffler NM, Thomas BF, Kuhn CM (1999) Effects of sex and gonadectomy on cocaine metabolism in the rat. J Pharmacol Exp Ther 290:1316–1323 PubMedCAS Google Scholar
Brass CA, Glick SD (1981) Sex differences in drug-induced rotation in two strains of rats. Brain Res 223:229–234 ArticlePubMedCAS Google Scholar
Chelaru MI, Yang PB, Dafny N (2012) Sex differences in the behavioral response to methylphenidate in three adolescent rat strains (WKY, SHR, SD). Behav Brain Res 226:8–17 ArticlePubMedCAS Google Scholar
Creese I, Iversen SD (1975) The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Res 83:419–436 ArticlePubMedCAS Google Scholar
Dafny N, Yang PB (2006) The role of age, genotype, sex, and route of acute and chronic administration of methylphenidate: a review of its locomotor effects. Brain Res Bull 68:393–405 ArticlePubMedCAS Google Scholar
Danielson TJ, Davis BA, Boulton AA (1977) Species variation with respect to the metabolism and excretion of d-amphetamine and d,l-_N_-hydroxyamphetamine succinate. Can J Physiol Pharmacol 55:439–443 ArticlePubMedCAS Google Scholar
Davis BA, Clinton SM, Akil H, Becker JB (2008) The effects of novelty-seeking phenotypes and sex differences on acquisition of cocaine self-administration in selectively bred high-responder and low-responder rats. Pharmacol Biochem Behav 90:331–338 ArticlePubMedCAS Google Scholar
Di Paolo T (1994) Modulation of brain dopamine transmission by sex steroids. Rev Neurosci 5:27–41 ArticlePubMed Google Scholar
Ellinwood EH Jr, Balster RL (1974) Rating the behavioral effects of amphetamine. Eur J Pharmacol 28:35–41 ArticlePubMedCAS Google Scholar
Evans SM, Foltin RW (2010) Does the response to cocaine differ as a function of sex or hormonal status in human and non-human primates? Horm Behav 58:13–21 ArticlePubMedCAS Google Scholar
Goodrich C, Lange J (1986) A differential sex effect of amphetamine on exploratory behavior in maturing mice. Physiol Behav 38:663–666 ArticlePubMedCAS Google Scholar
Gray JA (1971) Sex differences in emotional behaviour in mammals including man: endocrine bases. Acta Psychol (Amst) 35:29–46 ArticleCAS Google Scholar
Griffin WC 3rd, Middaugh LD (2006) The influence of sex on extracellular dopamine and locomotor activity in C57BL/6J mice before and after acute cocaine challenge. Synapse 59:74–81 ArticlePubMedCAS Google Scholar
Groppetti A, Costa E (1969) Factors affecting the rate of disappearance of amphetamine in rats. Int J Neuropharmacol 8:209–215 ArticlePubMedCAS Google Scholar
Hooks MS, Kalivas PW (1995) The role of mesoaccumbens-pallidal circuitry in novelty-induced behavioral activation. Neuroscience 64:587–597 ArticlePubMedCAS Google Scholar
Hu M, Crombag HS, Robinson TE, Becker JB (2004) Biological basis of sex differences in the propensity to self-administer cocaine. Neuropsychopharmacology 29:81–85 ArticlePubMedCAS Google Scholar
Hughes RN (1968) Behaviour of male and female rats with free choice of two environments differing in novelty. Anim Behav 16:92–96 ArticlePubMedCAS Google Scholar
Hughes RN, Desmond CS, Fisher LC (2004) Room novelty, sex, scopolamine and their interactions as determinants of general activity and rearing, and light-dark preferences in rats. Behav Processes 67:173–181 ArticlePubMed Google Scholar
Johnson ML, Day AE, Ho CC, Walker QD, Francis R, Kuhn CM (2010a) Androgen decreases dopamine neurone survival in rat midbrain. J Neuroendocrinol 22:238–247 ArticlePubMedCAS Google Scholar
Johnson ML, Ho CC, Day AE, Walker QD, Francis R, Kuhn CM (2010b) Oestrogen receptors enhance dopamine neurone survival in rat midbrain. J Neuroendocrinol 22:226–237 ArticlePubMedCAS Google Scholar
Justice AJ, de Wit H (1999) Acute effects of d-amphetamine during the follicular and luteal phases of the menstrual cycle in women. Psychopharmacology 145:67–75 ArticlePubMedCAS Google Scholar
Kelly PH, Iversen SD (1976) Selective 6OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant-induced locomotor activity in rats. Eur J Pharmacol 40:45–56 ArticlePubMedCAS Google Scholar
Kelly PH, Seviour PW, Iversen SD (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 94:507–522 ArticlePubMedCAS Google Scholar
Kuhn CM, Walker QD, Kaplan KA, Li ST (2001) Sex, steroids, and stimulant sensitivity. Ann N Y Acad Sci 937:188–201 ArticlePubMedCAS Google Scholar
Kuhn C, Johnson M, Thomae A, Luo B, Simon SA, Zhou G, Walker QD (2010) The emergence of gonadal hormone influences on dopaminergic function during puberty. Horm Behav 58:122–137 ArticlePubMedCAS Google Scholar
Kuppers E, Krust A, Chambon P, Beyer C (2008) Functional alterations of the nigrostriatal dopamine system in estrogen receptor-alpha knockout (ERKO) mice. Psychoneuroendocrinology 33:832–838 ArticlePubMed Google Scholar
Kuzmin A, Johansson B (2000) Reinforcing and neurochemical effects of cocaine: differences among C57, DBA, and 129 mice. Pharmacol Biochem Behav 65:399–406 ArticlePubMedCAS Google Scholar
Leibman D, Smolen A, Smolen TN (1990) Strain, sex and developmental profiles of cocaine metabolizing enzymes in mice. Pharmacol Biochem Behav 37:161–165 ArticlePubMedCAS Google Scholar
Leranth C, Roth RH, Elsworth JD, Naftolin F, Horvath TL, Redmond DE Jr (2000) Estrogen is essential for maintaining nigrostriatal dopamine neurons in primates: implications for Parkinson’s disease and memory. J Neurosci 20:8604–8609 PubMedCAS Google Scholar
Lin SN, Moody DE, Bigelow GE, Foltz RL (2001) A validated liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry method for quantitation of cocaine and benzoylecgonine in human plasma. J Anal Toxicol 25:497–503 PubMed Google Scholar
Lin SN, Walsh SL, Moody DE, Foltz RL (2003) Detection and time course of cocaine N-oxide and other cocaine metabolites in human plasma by liquid chromatography/tandem mass spectrometry. Anal Chem 75:4335–4340 ArticlePubMedCAS Google Scholar
Lynch WJ, Roth ME, Carroll ME (2002) Biological basis of sex differences in drug abuse: preclinical and clinical studies. Psychopharmacology 164:121–137 ArticlePubMedCAS Google Scholar
Melega WP, Williams AE, Schmitz DA, DiStefano EW, Cho AK (1995) Pharmacokinetic and pharmacodynamic analysis of the actions of d-amphetamine and D-methamphetamine on the dopamine terminal. J Pharmacol Exp Ther 274:90–96 PubMedCAS Google Scholar
Mendelson JH, Mello NK, Sholar MB, Siegel AJ, Kaufman MJ, Levin JM, Renshaw PF, Cohen BM (1999) Cocaine pharmacokinetics in men and in women during the follicular and luteal phases of the menstrual cycle. Neuropsychopharmacology 21:294–303 ArticlePubMedCAS Google Scholar
Meyer EM Jr, Lytle LD (1978) Sex related differences in the physiological disposition of amphetamine and its metabolites in the rat. Proc West Pharmacol Soc 21:313–316 PubMedCAS Google Scholar
Morse AC, Erwin VG, Jones BC (1993) Strain and housing affect cocaine self-selection and open-field locomotor activity in mice. Pharmacol Biochem Behav 45:905–912 ArticlePubMedCAS Google Scholar
Parylak SL, Caster JM, Walker QD, Kuhn CM (2008) Gonadal steroids mediate the opposite changes in cocaine-induced locomotion across adolescence in male and female rats. Pharmacol Biochem Behav 89:314–323 ArticlePubMedCAS Google Scholar
Quintero GC, Spano D (2011) Exploration of sex differences in Rhes effects in dopamine mediated behaviors. Neuropsychiatr Dis Treat 7:697–706 ArticlePubMed Google Scholar
Quintero GC, Spano D, Lahoste GJ, Harrison LM (2008) The Ras homolog Rhes affects dopamine D1 and D2 receptor-mediated behavior in mice. Neuroreport 19:1563–1566 ArticlePubMedCAS Google Scholar
Reith ME, Wiener HL, Fischette CT (1991) Sertraline and cocaine-induced locomotion in mice. I. Acute studies. Psychopharmacology 103:297–305 ArticlePubMedCAS Google Scholar
Robinson TE, Becker JB, Ramirez VD (1980) Sex differences in amphetamine-elicited rotational behavior and the lateralization of striatal dopamine in rats. Brain Res Bull 5:539–545 ArticlePubMedCAS Google Scholar
Russo SJ, Festa ED, Fabian SJ, Gazi FM, Kraish M, Jenab S, Quinones-Jenab V (2003a) Gonadal hormones differentially modulate cocaine-induced conditioned place preference in male and female rats. Neuroscience 120:523–533 ArticlePubMedCAS Google Scholar
Russo SJ, Jenab S, Fabian SJ, Festa ED, Kemen LM, Quinones-Jenab V (2003b) Sex differences in the conditioned rewarding effects of cocaine. Brain Res 970:214–220 ArticlePubMedCAS Google Scholar
Sahakian BJ, Robbins TW, Morgan MJ, Iversen SD (1975) The effects of psychomotor stimulants on stereotypy and locomotor activity in socially-deprived and control rats. Brain Res 84:195–205 ArticlePubMedCAS Google Scholar
Schlussman SD, Ho A, Zhou Y, Curtis AE, Kreek MJ (1998) Effects of “binge” pattern cocaine on stereotypy and locomotor activity in C57BL/6J and 129/J mice. Pharmacol Biochem Behav 60:593–599 ArticlePubMedCAS Google Scholar
Schlussman SD, Zhang Y, Kane S, Stewart CL, Ho A, Kreek MJ (2003) Locomotion, stereotypy, and dopamine D1 receptors after chronic “binge” cocaine in C57BL/6J and 129/J mice. Pharmacol Biochem Behav 75:123–131 ArticlePubMedCAS Google Scholar
Sershen H, Hashim A, Lajtha A (1998) Gender differences in kappa-opioid modulation of cocaine-induced behavior and NMDA-evoked dopamine release. Brain Res 801:67–71 ArticlePubMedCAS Google Scholar
Siuciak JA, McCarthy SA, Chapin DS, Reed TM, Vorhees CV, Repaske DR (2007) Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-1B (PDE1B) enzyme. Neuropharmacology 53:113–124 ArticlePubMedCAS Google Scholar
Slawson MH, Taccogno JL, Foltz RL, Moody DE (2002) Quantitative analysis of selegiline and three metabolites (N-desmethylselegiline, methamphetamine, and amphetamine) in human plasma by high-performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. J Anal Toxicol 26:430–437 PubMedCAS Google Scholar
Stohr T, Schulte Wermeling D, Weiner I, Feldon J (1998) Rat strain differences in open-field behavior and the locomotor stimulating and rewarding effects of amphetamine. Pharmacol Biochem Behav 59:813–818 ArticlePubMedCAS Google Scholar
Thompson TL, Moss RL (1994) Estrogen regulation of dopamine release in the nucleus accumbens: genomic- and nongenomic-mediated effects. J Neurochem 62:1750–1756 ArticlePubMedCAS Google Scholar
Thompson ML, Shuster L, Casey E, Kanel GC (1984) Sex and strain differences in response to cocaine. Biochem Pharmacol 33:1299–1307 ArticlePubMedCAS Google Scholar
Thomsen M, Caine SB (2011) Psychomotor stimulant effects of cocaine in rats and 15 mouse strains. Exp Clin Psychopharmacol 19:321–341 ArticlePubMedCAS Google Scholar
Tolliver BK, Carney JM (1994) Sensitization to stereotypy in DBA/2J but not C57BL/6J mice with repeated cocaine. Pharmacol Biochem Behav 48:169–173 ArticlePubMedCAS Google Scholar
van den Buuse M, Halley P, Hill R, Labots M, Martin S (2012) Altered _N_-methyl-d-aspartate receptor function in reelin heterozygous mice: male–female differences and comparison with dopaminergic activity. Prog Neuropsychopharmacol Biol Psychiatry 37:237–246 ArticlePubMed Google Scholar
van Haaren F, Meyer ME (1991) Sex differences in locomotor activity after acute and chronic cocaine administration. Pharmacol Biochem Behav 39:923–927 ArticlePubMed Google Scholar
Visalli T, Turkall R, Abdel-Rahman MS (2005) Gender differences in cocaine pharmacokinetics in CF-1 mice. Toxicol Lett 155: 35–40 Google Scholar
Walker QD, Cabassa J, Kaplan KA, Li ST, Haroon J, Spohr HA, Kuhn CM (2001) Sex differences in cocaine-stimulated motor behavior: disparate effects of gonadectomy. Neuropsychopharmacology 25:118–130 ArticlePubMedCAS Google Scholar
Walker QD, Nelson CJ, Smith D, Kuhn CM (2002) Vaginal lavage attenuates cocaine-stimulated activity and establishes place preference in rats. Pharmacol Biochem Behav 73:743–752 ArticlePubMedCAS Google Scholar
Walker QD, Williams CN, Jotwani RP, Waller ST, Francis R, Kuhn CM (2007) Sex differences in the neurochemical and functional effects of MDMA in Sprague-Dawley rats. Psychopharmacology 189:435–445 ArticlePubMedCAS Google Scholar
Walker QD, Schramm-Sapyta NL, Caster JM, Waller ST, Brooks MP, Kuhn CM (2009) Novelty-induced locomotion is positively associated with cocaine ingestion in adolescent rats; anxiety is correlated in adults. Pharmacol Biochem Behav 91:398–408 ArticlePubMedCAS Google Scholar
Walker QD, Johnson ML, Van Swearingen AE, Arrant AE, Caster JM, Kuhn CM (2012) Individual differences in psychostimulant responses of female rats are associated with ovarian hormones and dopamine neuroanatomy. Neuropharmacology 62:2266–2276 Article Google Scholar