- Achterholt S, Priefert H, Steinbüchel A (1998) Purification and characterization of the coniferyl aldehyde dehydrogenase from Pseudomonas sp. strain HR199 and molecular characterization of the gene. J Bacteriol 180: 4387–4391
CAS PubMed Google Scholar
- Achterholt S, Priefert H, Steinbüchel A (2000) Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 54: 799–807
PubMed Google Scholar
- Bullock WO, Fernandez JM, Stuart JM (1987) XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. BioTechniques 5: 376–379
CAS Google Scholar
- Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254
Article CAS PubMed Google Scholar
- Crawford DL, Crawford RL (1980) Microbial degradation of lignin. Enzyme Microb Technol 2: 11–22
Article CAS Google Scholar
- Escott-Watson PL, Marais JP (1992) Determination of alkali-soluble phenolic monomers in grasses after separation by thin-layer chromatography. J Chromatogr 604: 290–293
Article CAS Google Scholar
- Falconnier B, Lapierre C, Lesage-Meessen L, Yonnet G, Brunerie P, Ceccaldi BC, Corrieu G, Asther M (1994) Vanillin as a product of ferulic acid biotransformation by the white rot fungus Pycnoporus cinnabarinus I-37: identification of metabolic pathways. J Biotechnol 37: 123–132
CAS Google Scholar
- Franklin FCH, Bagdasarian M, Bagdasarian MM, Timmis KN (1981) Molecular and functional analysis of the TOL plasmid pWW0 from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring _meta_-cleavage pathway. Proc Natl Acad Sci USA 78: 7458–7462
Google Scholar
- Friedrich B, Hogrefe C, Schlegel HG (1981) Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. J Bacteriol 147: 198–205
CAS PubMed Google Scholar
- Gasson MJ, Kitamura Y, McLauchlan WR, Narbad A, Parr AJ, Parsons ELH, Payne J, Rhodes MJC, Walton NJ (1998) Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J Biol Chem 273: 4163–4170
PubMed Google Scholar
- Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557–580
CAS PubMed Google Scholar
- Ishii T (1997) Structure and function of feruloylated polysaccharides. Plant Sci 127: 111–127
Article CAS Google Scholar
- Labuda IM, Goers SK, Keon KA (1994) Bioconversion process for the production of vanillin. Patent application US 5279950
- Lesage-Meessen L, Delattre M, Haon M, Thibault JF, Ceccaldi BC, Brunerie P, Asther M (1996) A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J Biotechnol 50: 107–113
Article CAS PubMed Google Scholar
- Lesage-Meessen L, Lomascolo A, Bonnin E, Thibault JF, Buleon A, Roller M, Asther M, Record E, Ceccaldi BC, Asther M (2002) A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran. Appl Biochem Biotechnol 102: 141–153
Google Scholar
- Lindahl R (1992) Aldehyde dehydrogenases and their role in carcinogenesis. Crit Rev Biochem Mol Biol 27: 283–335
CAS PubMed Google Scholar
- Mermod N, Lehrbach PR, Reineke W, Timmis KN (1984). Transcription of the TOL plasmid toluate catabolic pathway operon of Pseudomonas putida is determined by a pair of co-ordinately and positively regulated overlapping promoters. EMBO J 11: 2461–2466
Google Scholar
- Molina L, Ramos C, Ronchel MC, Mølin S, Ramos JL (1998) Field release of biologically contained Pseudomonas putida strains with biodegradative potential. Appl Environ Microbiol 64: 2073–2078
Google Scholar
- Muheim A, Lerch K (1999) Towards a high-yield bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 51: 456–461
Article CAS Google Scholar
- Nusslein K, Maris D, Timmis KN, Dwyer DF (1992) Expression and transfer of engineered catabolic pathways harbored by Pseudomonas ssp. introduced into activated sludge microcosms. Appl Environ Microbiol 58: 3380–3386
CAS PubMed Google Scholar
- Oosterveld A, Beldman G, Schols HA, Voragen AGJ (2000) Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp. Carbohyd Res 328: 185–197
Article CAS Google Scholar
- Overhage J, Priefert H, Rabenhorst J, Steinbüchel A (1999a) Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene. Appl Microbiol Biotechnol 52: 820–828
PubMed Google Scholar
- Overhage J, Priefert H, Steinbüchel A (1999b) Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199. Appl Environ Microbiol 65: 4837–4847
PubMed Google Scholar
- Priefert H, Overhage J, Steinbüchel A (1999) Identification and molecular characterization of the eugenol hydroxylase genes (ehyA/ehyB) of Pseudomonas sp. strain HR199. Arch Microbiol 172: 354–363
Article CAS PubMed Google Scholar
- Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56: 296–314
PubMed Google Scholar
- Ramos JL, Díaz E, Dowling D, Lorenzo V de, Mølin S, O'Gara F, Ramos C, Timmis KN (1994) The behavior of bacteria designed for biodegradation. Bio/Technology 12: 1349–1356
CAS Google Scholar
- Ramos JL, Duque E, Huertas MJ, Haïdour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177: 3911–3916
CAS PubMed Google Scholar
- Ramos JL, Marqués S, Timmis KN (1997) Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annu Rev Microbiol 51: 341–373
Article CAS PubMed Google Scholar
- Ronchel MC, Ramos C, Jensen LB, Mølin S, Ramos JL (1995) Construction and behavior of biologically contained bacteria for environmental applications in bioremediation. Appl Environ Microbiol 61: 2990–2994
CAS PubMed Google Scholar
- Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
Google Scholar
- Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467
PubMed Google Scholar
- Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38: 209–222
CAS Google Scholar
- Simon R, Priefer U, Pühler A (1983a) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Bio/Technology 1: 784–791
CAS Google Scholar
- Simon R, Priefer U, Pühler A (1983b) Vector plasmids for in vivo and in vitro manipulations of gram-negative bacteria. In: Pühler A (ed) Molecular genetics of the bacteria-plant interaction. Springer, Berlin Heidelberg New York, pp 98–106
- Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43: 159271
Google Scholar
- Stegemann H, Francksen H, Macko V (1973) Potato proteins: genetic and physiological changes, evaluated by one or two-dimensional PAA-geltechniques. Z Naturforsch 28: 722–732
CAS Google Scholar