Ajuebor J, Buttimer C, Arroyo-Moreno S, Chanishvili N, Gabriel E, O’Mahony J, McAuliffe O, Neve H, Franz C, Coffey A (2018) Comparison of Staphylococcus phage K with close phage relatives commonly employed in phage therapeutics. Antibiotics 7:37. https://doi.org/10.3390/antibiotics7020037 ArticleCASPubMed Central Google Scholar
Alves DR, Gaudion A, Bean JE, Perez Esteban P, Arnot TC, Harper DR, Kot W, Hansen LH, Enright MC, Jenkins ATA (2014) Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl Environ Microbiol 80:6694–6703. https://doi.org/10.1128/AEM.01789-14 ArticleCASPubMedPubMed Central Google Scholar
Azam AH (2019) Analysis of phage resistance mechanism of Staphylococcus aureus SA003 which causes bovine mastitis against phages ɸSA012 and ɸSA039. Dissertation, Tokyo Institute of Technology
Azam AH, Tanji Y (2019) Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl Microbiol Biotechnol 103(5):2121–2131. https://doi.org/10.1007/s00253-019-09629-x
Azam AH, Hoshiga F, Takeuchi I, Miyanaga K, Tanji Y (2018) Analysis of phage resistance in Staphylococcus aureus SA003 reveals different binding mechanisms for the closely related Twort-like phages ɸSA012 and ɸSA039. Appl Microbiol Biotechnol 102(20):8963–8977 ArticleCASPubMed Google Scholar
Brown S, Xia G, Luhachack LG, Campbell J, Meredith TC, Chen C, Winstel V, Gekeler C, Irazoqui JE, Peschel A, Walker S (2012) Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc Natl Acad Sci 109:18909–18914. https://doi.org/10.1073/pnas.1209126109 ArticlePubMed Google Scholar
Dunne M, Hupfeld M, Klumpp J, Loessner MJ (2018) Molecular basis of bacterial host interactions by Gram-positive targeting bacteriophages. Viruses 10:8 ArticleCAS Google Scholar
Dvořáčková M, Růžička F, Benešík M, Pantůček R, Dvořáková-Heroldová M (2018) Antimicrobial effect of commercial phage preparation Stafal® on biofilm and planktonic forms of methicillin-resistant Staphylococcus aureus. Folia Microbiol 64:121–126. https://doi.org/10.1007/s12223-018-0622-3 ArticleCAS Google Scholar
El Haddad L, Ben AN, Plante PL, Dumaresq J, Katsarava R, Labrie S, Corbeil J, St-Gelais D, Moineau S (2014) Improving the safety of Staphylococcus aureus polyvalent phages by their production on a Staphylococcus xylosus strain. PLoS One 9:7. https://doi.org/10.1371/journal.pone.0102600 ArticleCAS Google Scholar
Fischetti VA (2010) Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol 300:357–362 ArticleCASPubMedPubMed Central Google Scholar
Fujiki J, Nakamura T, Furusawa T, Ohno H, Takahashi H, Kitana J, Usui M, Higuchi H, Tanji Y, Tamura Y, Iwano H (2018) Characterization of the lytic capability of a lysk-like endolysin, lys-phiSA012, derived from a polyvalent Staphylococcus aureus bacteriophage. Pharmaceuticals 11(1). https://doi.org/10.3390/ph11010025
Iwano H, Inoue Y, Takasago T, Kobayashi H, Furusawa T, Taniguchi K, Fujiki J, Yokota H, Usui M, Tanji Y, Hagiwara K, Higuchi H, Tamura Y (2018) Bacteriophage ΦSA012 has a broad host range against Staphylococcus aureus and effective lytic capacity in a mouse mastitis model. Biology 7:8. https://doi.org/10.3390/biology7010008 ArticleCASPubMed Central Google Scholar
Jikia D, Chkhaidze N, Imedashvili E, Mgaloblishvili I, Tsitlanadze G, Katsarava R, Morris JG, Sulakvelidze A (2005) The use of a novel biodegradable preparation capable of the sustained release of bacteriophages and ciprofloxacin, in the complex treatment of multidrug-resistant _Staphylococcus aureus_-infected local radiation injuries caused by exposure to Sr90. Clin Exp Dermatol 30:23–26. https://doi.org/10.1111/j.1365-2230.2004.01600.x ArticleCASPubMed Google Scholar
Kaneko J, Narita-Yamada S, Wakabayashi Y, Kamio Y (2009) Identification of ORF636 in phage φSLT carrying Panton-Valentine leukocidin genes, acting as an adhesion protein for a poly(glycerophosphate) chain of lipoteichoic acid on the cell surface of Staphylococcus aureus. J Bacteriol 191:4674–4680. https://doi.org/10.1128/JB.01793-08 ArticleCASPubMedPubMed Central Google Scholar
Khairullin IN, Pozdeev OK, Shaimordanov R (2002) Efficiency of using specific bacteriophages in the treatment and prophylaxis of surgical postoperative infections. Kazan Med J 83:258–261 [Article in Russian] Google Scholar
Kumaran D, Taha M, Yi QL, Ramirez-Arcos S, Diallo JS, Carli A, Abdelbary H (2018) Does treatment order matter? Investigating the ability of bacteriophage to augment antibiotic activity against Staphylococcus aureus biofilms. Front Microbiol 9:127. https://doi.org/10.3389/fmicb.2018.00127 ArticlePubMedPubMed Central Google Scholar
Kvachadze L, Balarjishvili N, Meskhi T, Tevdoradze E, Skhirtladze N, Pataridze T, Adamia R, Topuria T, Kutter E, Rohde C, Kutateladze M (2011) Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microb Biotechnol 4:643–650. https://doi.org/10.1111/j.1751-7915.2011.00259.x ArticleCASPubMedPubMed Central Google Scholar
Leskinen K, Tuomala H, Wicklund A, Horsma-Heikkinen J, Kuusela P, Skurnik M, Kiljunen S (2017) Characterization of vB_SauM-fRuSau02, a Twort-like bacteriophage isolated from a therapeutic phage cocktail. Viruses 9:258. https://doi.org/10.3390/v9090258 ArticleCASPubMed Central Google Scholar
Li X, Koç C, Kühner P, Stierhof Y-D, Krismer B, Enright MC, Penadés JR, Wolz C, Stehle T, Cambillau C, Peschel A, Xia G (2016) An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus. Nat Publ Gr 6:26455. https://doi.org/10.1038/srep26455 ArticleCAS Google Scholar
Lindsay JA (2010) Genomic variation and evolution of Staphylococcus aureus. Int J Med Microbiol 300:98–103 ArticleCASPubMed Google Scholar
Liu J, Dehbi M, Moeck G, Arhin F, Bauda P, Bergeron D, Callejo M, Ferretti V, Ha N, Kwan T, McCarty J, Srikumar R, William D, Wu JJ, Gros P, Pelletier J, Dubow M (2004) Antimicrobial drug discovery through bacteriophage genomics. Nat Biotechnol 22:185–191 ArticleCASPubMed Google Scholar
Lobocka M, Hejnowicz MS, Dabrowski K, Gozdek A, Kosakowski J, Witkowska M, Ulatowska MI, Weber-Dabrowska B, Kwiatek M, Parasion S, Gawor J, Kosowska H, Glowacka A (2012) Genomics of staphylococcal Twort-like phages potential therapeutics of the post-antibiotic era. Adv Virus Res 83:143–216. https://doi.org/10.1016/B978-0-12-394438-2.00005-0 ArticleCASPubMed Google Scholar
Maciejewska B, Olszak T, Drulis-Kawa Z (2018) Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Appl Microbiol Biotechnol 102:2563–2581 ArticleCASPubMedPubMed Central Google Scholar
Matsuzaki S, Yasuda M, Nishikawa H, Kuroda M, Ujihara T, Shuin T, Shen Y, Jin Z, Fujimoto S, Nasimuzzaman MD, Wakiguchi H, Sugihara S, Sugiura T, Koda S, Muraoka A, Imai S (2003) Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage φMR11. J Infect Dis 187:613–624. https://doi.org/10.1086/374001 ArticleCASPubMed Google Scholar
McCallin S, Sarker SA, Sultana S, Oechslin F, Brüssow H (2018) Metagenome analysis of Russian and Georgian Pyophage cocktails and a placebo-controlled safety trial of single phage versus phage cocktail in healthy Staphylococcus aureus carriers. Environ Microbiol 20:3278–3293. https://doi.org/10.1111/1462-2920.14310 ArticleCASPubMed Google Scholar
Moodley A, Kot W, Nälgård S, Jakociune D, Neve H, Hansen LH, Guardabassi L, Vogensen FK (2018) Isolation and characterization of bacteriophages active against methicillin-resistant Staphylococcus pseudintermedius. Res Vet Sci 122:81–85. https://doi.org/10.1016/j.rvsc.2018.11.008 ArticleCASPubMed Google Scholar
Morozova VV, Vlassov VV, Tikunova NV (2018) Applications of bacteriophages in the treatment of localized infections in humans. Front Microbiol 9:1696 ArticlePubMedPubMed Central Google Scholar
O’Flaherty S, Ross RP, Coffey A (2009) Bacteriophage and their lysins for elimination of infectious bacteria: review article. FEMS Microbiol Rev 33:801–819 ArticleCASPubMed Google Scholar
Pincus NB, Reckhow JD, Saleem D, Jammeh ML, Datta SK, Myles IA (2015) Strain specific phage treatment for Staphylococcus aureus infection is influenced by host immunity and site of infection. PLoS One 10:1371. https://doi.org/10.1371/journal.pone.0124280 ArticleCAS Google Scholar
Sakoulas G, Eliopoulos GM, Fowler VG, Moellering RC, Novick RP, Lucindo N, Yeaman MR, Bayer AS (2005) Reduced susceptibility of Staphylococcus aureus to vancomycin and platelet microbicidal protein correlates with defective autolysis and loss of accessory gene regulator (agr) function. Antimicrob Agents Chemother 49:2687–2692. https://doi.org/10.1128/AAC.49.7.2687-2692.2005 ArticleCASPubMedPubMed Central Google Scholar
Schmelcher M, Loessner MJ (2014) Application of bacteriophages for detection of foodborne pathogens. Bacteriophage 4:28137 Article Google Scholar
Shaw DR, Chatterjee AN (1971) O-Acetyl groups as a component of the bacteriophage receptor on Staphylococcus aureus cell walls. J Bacteriol 108:584–585 CASPubMedPubMed Central Google Scholar
Synnott AJ, Kuang Y, Kurimoto M, Yamamichi K, Iwano H, Tanji Y (2009) Isolation from sewage influent and characterization of novel Staphylococcus aureus bacteriophages with wide host ranges and potent lytic capabilities. Appl Environ Microbiol 75:4483–4490. https://doi.org/10.1128/AEM.02641-08 ArticleCASPubMedPubMed Central Google Scholar
Takemura-Uchiyama I, Uchiyama J, ichiro KS, Inoue T, Ujihara T, Ohara N, Daibata M, Matsuzaki S (2013) Evaluating efficacy of bacteriophage therapy against Staphylococcus aureus infections using a silkworm larval infection model. FEMS Microbiol Lett 347:52–60 ArticleCASPubMed Google Scholar
Takemura-Uchiyama I, Uchiyama J, Osanai M, Morimoto N, Asagiri T, Ujihara T, Daibata M, Sugiura T, Matsuzaki S (2014) Experimental phage therapy against lethal lung-derived septicemia caused by Staphylococcus aureus in mice. Microbes Infect 16:512–517. https://doi.org/10.1016/j.micinf.2014.02.011 ArticleCASPubMed Google Scholar
Tanji Y, Shimada T, Fukudomi H, Miyanaga K, Nakai Y, Unno H (2005) Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice. J Biosci Bioeng 100:280–287. https://doi.org/10.1263/jbb.100.280 ArticleCASPubMed Google Scholar
Uchiyama J, Takemura-UchiyAma I, Kato SI, Sato M, Ujihara T, Matsui H, Hanaki H, Daibata M, Matsuzaki S (2014) In silico analysis of AHJD-like viruses, Staphylococcus aureus phages S24-1 and S13’, and study of phage S24-1 adsorption. MicrobiologyOpen 3:257–270. https://doi.org/10.1002/mbo3.166 ArticleCASPubMedPubMed Central Google Scholar
Uchiyama J, Taniguchi M, Kurokawa K, Takemura-Uchiyama I, Ujihara T, Shimakura H, Sakaguchi Y, Murakami H, Sakaguchi M, Matsuzaki S (2017) Adsorption of Staphylococcus viruses S13′ and S24-1 on Staphylococcus aureus strains with different glycosidic linkage patterns of wall teichoic acids. J Gen Virol 98:2171–2180. https://doi.org/10.1099/jgv.0.000865 ArticleCASPubMed Google Scholar
Utter B, Deutsch DR, Schuch R, Winer BY, Verratti K, Bishop-Lilly K, Sozhamannan S, Fischetti VA (2014) Beyond the chromosome: the prevalence of unique extra-chromosomal bacteriophages with integrated virulence genes in pathogenic Staphylococcus aureus. PLoS One 9:6. https://doi.org/10.1371/journal.pone.0100502 Article Google Scholar
Vandersteegen K, Mattheus W, Ceyssens P-J, Bilocq F, De Vos D, Pirnay J-P, Noben J-P, Merabishvili M, Lipinska U, Hermans K, Lavigne R (2011) Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus. PLoS One 6:24418. https://doi.org/10.1371/journal.pone.0024418 ArticleCAS Google Scholar
Winstel V, Liang C, Sanchez-Carballo P, Steglich M, Munar M, Broker BM, Penadés JR, Nübel U, Holst O, Dandekar T, Peschel A, Xia G (2013) Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens. Nat Commun 4:2345. https://doi.org/10.1038/ncomms3345 ArticlePubMedPubMed Central Google Scholar