Kinetics of [11C]choline uptake in prostate cancer: a PET stydy (original) (raw)
References
Parker SL, Tong T, Bolden S, Wingo PA. Cancer statistics 1996. CA Cancer J Clin 1996; 65:5–27. Google Scholar
Yu KK, Hricak H. Imaging prostate cancer. Radiol Clin North Am 2000; 38:59–85. PubMed Google Scholar
May F, Treumann T, Dettmar P, Hartung R, Breul J. Limited value of endorectal magnetic resonance imaging and transrectal ultrasonography in the staging of clinically localized prostate cancer. BJU Int 2001; 87:66–69. ArticlePubMed Google Scholar
Hricak H, Dooms GC, Jeffrey RB, et al. Prostatic carcinoma: staging by clinical assessment, CT, and MRI imaging. Radiology 1987; 162:331–336. PubMed Google Scholar
Smith PH, Bono A, Calais da Silva F, et al. Some limitations of the radioisotope bone scan in patients with metastatic prostatic cancer. Cancer 1990; 66:1009–1016. PubMed Google Scholar
Tiguert R, Gheiler EL, Tefilli MV, et al. Lymph node size does not correlate with the presence of prostate cancer metastasis. Urology 1999; 53:367–371. ArticlePubMed Google Scholar
Carroll P, Coley C, McLeod D, et al. Prostate-specific antigen best practice policy. Part I. Early detection and diagnosis of prostate cancer. Urology 2001; 57:217–224. ArticlePubMed Google Scholar
Carroll P, Coley C, McLeod D, et al. Prostate-specific antigen best practice policy. Part II. Prostate cancer staging and post-treatment follow-up. Urology 2001; 57:225–229. Article Google Scholar
Gambhir SS, Czernin J, Schwimmer J, Silverman DHS, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med 2001; 42:1S–93S. CASPubMed Google Scholar
Effert PJ, Bares R, Handt S, Wolff JM, Bull U, Jakse G. Metabolic imaging of untreated prostate cancer by positron emission tomography with18fluorine-labeled deoxyglucose. J Urol 1996; 155:994–998. CASPubMed Google Scholar
Hofer C, Laubenbacher C, Block T, Breul J, Hartung R, Schwaiger M. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 1999; 36:31–35. CAS Google Scholar
Liu IJ, Zafar MB, Lai YH, Segall GM, Terris MK. Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 2001; 57:108–111. Article Google Scholar
Hoh CK, Seltzer MA, Franklin J, deKernion JB, Phelps ME, Belldegrun A. Positron emission tomography in urological oncology. J Urol 1998; 159:347–356. CASPubMed Google Scholar
Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 1998; 39:990–995. CASPubMed Google Scholar
Kotzerke J, Prang J, Neumaier B, et al. Experience with carbon-11-choline positron emission tomography in prostate cancer. Eur J Nucl Med 2000; 27:1415–1419. CASPubMed Google Scholar
De Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJA. Visualization of prostate cancer with11C-choline positron emission tomography. Eur Urol 2002; 42:18–23. ArticlePubMed Google Scholar
De Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensik HJ. Preoperative staging of pelvic lymph nodes in prostate cancer by11C-choline PET. J Nucl Med 2003; 44:331–335. PubMed Google Scholar
De Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensik HJA.11C-Choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 2003; 44:32–39. Article Google Scholar
Picchio M, Messa C, Landoni C, Gianolli L, Sironi S, Brioschi M, Matarrese M, Matei DV, De Cobelli F, Del Maschio A, Rocco F, Rigatti P, Fazio F. Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol 2003; 169:1337–1340. PubMed Google Scholar
Zeisel SH. Dietary choline: biochemistry, physiology, and pharmacology. Annu Rev Nutr 1981; 1:95–121. CASPubMed Google Scholar
Negendank W. Studies of human tumors by MRS: a review. NMR Biomed 1992; 5:303–324. PubMed Google Scholar
Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson SJ. Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7 cm3) spatial resolution. Radiology 1996; 198:795–805. CASPubMed Google Scholar
Bhakoo KK, Williams SR, Florian CL, Land H, Noble MD. Immortalization and transformation are associated with specific alterations in choline metabolism. Cancer Res 1996; 56:4630–4635. PubMed Google Scholar
Ackerstaff E, Pflug BR, Nelson JB, Bhujwalla ZM. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res 2001; 61:3599–3603. PubMed Google Scholar
Hernandez-Alcoceba R, Saniger L, Campos J, et al. Choline kinase inhibitors as a novel approach for antiproliferative drug design. Oncogene 1997; 15:2289–2301. Article Google Scholar
Molina AR, Penalva V, Lucas L, Lacal JC. Regulation of choline kinase activity by RAS proteins involves Ra1-GDS and PI3 K. Oncogene 2002; 21:937–946. ArticlePubMed Google Scholar
Sobin LH, Wittekind CH, eds. TNM classification of malignant tumours, 5th edn. New York: Wiley; 1997:170–173.
Mostofi FK, Sesterhenn I, Sobin LH. International histological classification of tumours, No. 22. Histological typing of prostate tumours. Geneva: World Health Organization; 1980:7–26.
Gleason DF, for the Veterans Administration Cooperative Urological Group. Histologic grading and staging of prostatic carcinoma. In: Tannenbaum M, ed. Urologic pathology: The prostate. Philadelphia: Lea and Febiger; 1977:171–198.
Terris MK, Stamey TA. Determination of prostate volume by transrectal ultrasound. J Urol 1991; 145:984–987. CASPubMed Google Scholar
Roivainen A, Forsback S, Grönroos T, et al. Blood metabolism of [methyl-11C]choline; implications for in vivo imaging with positron emission tomography. Eur J Nucl Med 2000; 27:25–32. CASPubMed Google Scholar
Woodard HQ, Bigler RE, Freed B. Expression of tissue isotope distribution. J Nucl Med 1975; 16:958–959. CAS Google Scholar
Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Metab 1985; 5:584–590. CAS Google Scholar
Oyama N, Akino H, Kanamaru H, et al.11C-acetate PET imaging of prostate cancer. J Nucl Med 2002; 43:181–186. CASPubMed Google Scholar
Kato T, Tsukamoto E, Kuge Y et al. Accumulation of [11C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging 2002; 29:1492–1495. ArticlePubMed Google Scholar
DeGrado TR, Coleman RE, Wang S, et al. Synthesis and evaluation of18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 2000; 61:110–117. Google Scholar
Hara T, Kosaka N, Kishi H. Development of18F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 2002; 43:187–199. CASPubMed Google Scholar
Ward JF, Morris JC, Hamblen S, et al. Prostate cancer imaging in murine model using carbon-11 labeled choline and acetate [abstract]. Mol Imaging Biol 2002; 4S:S35. Google Scholar
Kotzerke J, Volkmer BG, Glatting G, van den Hoff J, Gschwend JE, Messer P, Reske SN, Neumaier B. Intraindividual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer. Nuklearmedizin 2003; 42:25–30. PubMed Google Scholar