Exercise training early after acute myocardial infarction reduces stress-induced hypoperfusion and improves left ventricular function (original) (raw)
Taylor RS, Brown A, Ebrahim S, Jolliffe J, Noorani H, Rees K, et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med 2004;116:682–92. ArticlePubMed Google Scholar
Giannuzzi P, Tavazzi L, Temporelli PL, Corrà U, Imparato A, Gattone M, et al. Long-term physical training and left ventricular remodeling after myocardial infarction: results of the Exercise in Anterior Myocardial Infarction (EAMI) trial. EAMI Study Group. J Am Coll Cardiol 1993;22:1821–9. ArticlePubMedCAS Google Scholar
Giallauria F, Cirillo P, Lucci R, Pacileo M, De Lorenzo A, D’Agostino M, et al. Left ventricular remodelling in patients with moderate systolic dysfunction after myocardial infarction: favourable effects of exercise training and predictive role of N-terminal pro-brain natriuretic peptide. Eur J Cardiovasc Prev Rehabil 2008;15:113–8. ArticlePubMed Google Scholar
Giallauria F, Galizia G, Lucci R, D’Agostino M, Vitelli A, Maresca L, et al. Favorable effects of exercise-based cardiac rehabilitation after acute myocardial infarction on left atrial remodeling. Int J Cardiol 2009;136:300–6. ArticlePubMed Google Scholar
Leosco D, Rengo G, Iaccarino G, Golino L, Marchese M, Fortunato F, et al. Exercise promotes angiogenesis and improves beta-adrenergic receptor signalling in the post-ischaemic failing rat heart. Cardiovasc Res 2008;78:385–94. ArticlePubMedCAS Google Scholar
Giannuzzi P, Temporelli PL, Marchioli R, Maggioni AP, Balestroni G, Ceci V, et al. Global secondary prevention strategies to limit event recurrence after myocardial infarction: results of the GOSPEL study, a multicenter, randomized controlled trial from the Italian Cardiac Rehabilitation Network. Arch Intern Med 2008;168:2194–204. ArticlePubMed Google Scholar
Giallauria F, Lucci R, D’Agostino M, Vitelli A, Maresca L, Mancini M, et al. Two-year multicomprehensive secondary prevention program: favorable effects on cardiovascular functional capacity and coronary risk profile after acute myocardial infarction. J Cardiovasc Med (Hagerstown) 2009;10:772–80. Article Google Scholar
Hambrecht R, Adams V, Erbs S, Linke A, Kränkel N, Shu Y, et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 2003;107:3152–8. ArticlePubMedCAS Google Scholar
Leosco D, Iaccarino G, Cipolletta E, De Santis D, Pisani E, Trimarco V, et al. Exercise restores beta-adrenergic vasorelaxation in aged rat carotid arteries. Am J Physiol Heart Circ Physiol 2003;285:H369–74. PubMedCAS Google Scholar
Milani RV, Lavie CJ, Mehra MR. Reduction in C-reactive protein through cardiac rehabilitation and exercise training. J Am Coll Cardiol 2004;43:1056–61. ArticlePubMedCAS Google Scholar
Giallauria F, Cirillo P, D’agostino M, Petrillo G, Vitelli A, Pacileo M, et al. Effects of exercise training on high-mobility group box-1 levels after acute myocardial infarction. J Card Fail 2011;17:108–14. ArticlePubMedCAS Google Scholar
Giallauria F, De Lorenzo A, Pilerci F, Manakos A, Lucci R, Psaroudaki M, et al. Long-term effects of cardiac rehabilitation on end-exercise heart rate recovery after myocardial infarction. Eur J Cardiovasc Prev Rehabil 2006;13:544–50. ArticlePubMed Google Scholar
Giallauria F, De Lorenzo A, Pilerci F, Manakos A, Lucci R, Psaroudaki M, et al. Reduction of N terminal-pro-brain (B-type) natriuretic peptide levels levels with exercise-based cardiac rehabilitation in patients with left ventricular dysfunction after myocardial infarction. Eur J Cardiovasc Prev Rehabil 2006;13:625–32. ArticlePubMed Google Scholar
Giallauria F, Lucci R, De Lorenzo A, D’Agostino M, Del Forno D, Vigorito C. Favourable effects of exercise training on N-terminal pro-brain natriuretic peptide plasma levels in elderly patients after acute myocardial infarction. Age Ageing 2006;35:601–7. ArticlePubMed Google Scholar
Smart N, Meyer T, Butterfield J, Faddy S, Passino C, Malfatto G, et al. Individual patient meta-analysis of exercise training effects on systemic brain natriuretic peptide expression in heart failure. Eur J Prev Cardiol 2012;19:428–35. ArticlePubMedCAS Google Scholar
Rengo G, Leosco D, Zincarelli C, Marchese M, Corbi G, Liccardo D, et al. Adrenal GRK2 lowering is an underlying mechanism for the beneficial sympathetic effects of exercise training in heart failure. Am J Physiol Heart Circ Physiol 2010;298:H2032–8. ArticlePubMedCAS Google Scholar
Leosco D, Rengo G, Iaccarino G, Filippelli A, Lymperopoulos A, Zincarelli C, et al. Exercise training and beta-blocker treatment ameliorate age-dependent impairment of beta-adrenergic receptor signaling and enhance cardiac responsiveness to adrenergic stimulation. Am J Physiol Heart Circ Physiol 2007;293:H1596–603. ArticlePubMedCAS Google Scholar
Rinaldi B, Corbi G, Boccuti S, Filippelli W, Rengo G, Leosco D, et al. Exercise training affects age-induced changes in SOD and heat shock protein expression in rat heart. Exp Gerontol 2006;41:764–70. ArticlePubMedCAS Google Scholar
Belardinelli R, Georgiou D, Ginzton L, Cianci G, Purcaro A. Effects of moderate exercise training on thallium uptake and contractile response to low-dose dobutamine of dysfunctional myocardium in patients with ischemic cardiomyopathy. Circulation 1998;97:553–61. ArticlePubMedCAS Google Scholar
Scheuer J. Effects of physical training on myocardial vascularity and perfusion. Circulation 1982;66:491–5. ArticlePubMedCAS Google Scholar
Giallauria F, Acampa W, Ricci F, Vitelli A, Maresca L, Mancini M, et al. Effects of exercise training started within 2 weeks after acute myocardial infarction on myocardial perfusion and left ventricular function: a gated SPECT imaging study. Eur J Prev Cardiol 2012;19:1410–9. Google Scholar
Antman EM, Anbe DT, Armstrong PW, Bates ER, Green LA, Hand M, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction; A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of patients with acute myocardial infarction). J Am Coll Cardiol 2004;44:E1–211. ArticlePubMed Google Scholar
Hesse B, Tägil K, Cuocolo A, Anagnostopoulos C, Bardiés M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 2005;32:855–97. ArticlePubMedCAS Google Scholar
Cuocolo A, Petretta M, Acampa W, De Falco T. Gated SPECT myocardial perfusion imaging: the further improvements of an excellent tool. Q J Nucl Med Mol Imaging 2010;54:129–44. PubMedCAS Google Scholar
Berman DS, Abidov A, Kang X, Hayes SW, Friedman JD, Sciammarella MG, et al. Prognostic validation of a 17-segment score derived from a 20-segment score for myocardial perfusion SPECT interpretation. J Nucl Cardiol 2004;11:414–23. ArticlePubMed Google Scholar
Ferro A, Pellegrino T, Spinelli L, Acampa W, Petretta M, Cuocolo A. Comparison between dobutamine echocardiography and single-photon emission computed tomography for interpretive reproducibility. Am J Cardiol 2007;100:1239–44. ArticlePubMed Google Scholar
Belardinelli R, Georgiou D, Cianci G, Purcaro A. Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome. Circulation 1999;99:1173–82. ArticlePubMedCAS Google Scholar
Gunning MG, Walker J, Eastick S, Bomanji JB, Ell PJ, Walker JM. Exercise training following myocardial infarction improves myocardial perfusion assessed by thallium-201 scintigraphy. Int J Cardiol 2002;84:233–9. ArticlePubMed Google Scholar
Hung J, Gordon EP, Houston N, Haskell WL, Goris ML, DeBusk RF. Changes in rest and exercise myocardial perfusion and left ventricular function 3 to 26 weeks after clinically uncomplicated acute myocardial infarction: effects of exercise training. Am J Cardiol 1984;54:943–50. ArticlePubMedCAS Google Scholar
Beller GA, Murray GC, ErkenBrack SK. Influence of exercise training soon after myocardial infarction on regional myocardial perfusion and resting left ventricular function. Clin Cardiol 1992;15:17–23. ArticlePubMedCAS Google Scholar
Venkataraman R, Belardinelli L, Blackburn B, Heo J, Iskandrian AE. A study of the effects of ranolazine using automated quantitative analysis of serial myocardial perfusion images. JACC Cardiovasc Imaging 2009;2:1301–9. ArticlePubMed Google Scholar
Miller DD, Verani MS. Current status of myocardial perfusion imaging after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 1994;24:260–6. ArticlePubMedCAS Google Scholar
Acampa W, Petretta M, Florimonte L, Mattera A, Cuocolo A. Prognostic value of exercise cardiac tomography performed late after percutaneous coronary intervention in symptomatic and symptom-free patients. Am J Cardiol 2003;91:259–63. ArticlePubMed Google Scholar
Linke A, Erbs S, Hambrecht R. Exercise and the coronary circulation–alterations and adaptations in coronary artery disease. Prog Cardiovasc Dis 2006;48:270–84. ArticlePubMedCAS Google Scholar
Gielen S, Schuler G, Adams V. Cardiovascular effects of exercise training: molecular mechanisms. Circulation 2010;122:1221–38. ArticlePubMed Google Scholar
Jain A, Myers H, Sapin PM, O’Rourke RA. Comparison of symptom-limited and low level exercise tolerance tests early after myocardial infarction. J Am Coll Cardiol 1993;22:1816–20. ArticlePubMedCAS Google Scholar
Brown KA, Heller GV, Landin RS, Shaw LJ, Beller GA, Pasquale MJ, et al. Early dipyridamole (99m)Tc-sestamibi single photon emission computed tomographic imaging 2 to 4 days after acute myocardial infarction predicts in-hospital and postdischarge cardiac events: comparison with submaximal exercise imaging. Circulation 1999;100:2060–6. ArticlePubMedCAS Google Scholar
Heller GV, Brown KA, Landin RJ, Haber SB. Safety of early intravenous dipyridamole technetium 99m sestamibi SPECT myocardial perfusion imaging after uncomplicated first myocardial infarction. Early Post MI IV Dipyridamole Study (EPIDS). Am Heart J 1997;134:105–11. ArticlePubMedCAS Google Scholar
Heran BS, Chen JM, Ebrahim S, Moxham T, Oldridge N, Rees K, et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev 2011;7:CD001800. PubMed Google Scholar