Non-invasive assessment of cirrhosis using multiphasic dual-energy CT iodine maps: correlation with model for end-stage liver disease score (original) (raw)

References

  1. Tsochatzis EA, Bosch J, Burroughs AK (2014) Liver cirrhosis. Lancet 383 (9930):1749-1761. https://doi.org/10.1016/S0140-6736(14)60121-5
    Article PubMed Google Scholar
  2. Asrani SK, Devarbhavi H, Eaton J, Kamath PS (2019) Burden of liver diseases in the world. J Hepatol 70 (1):151-171. https://doi.org/10.1016/S0140-6736(14)60121-5
    Article PubMed Google Scholar
  3. Szymczak A, Simon K, Inglot M, Gladysz A (2012) Safety and effectiveness of blind percutaneous liver biopsy: analysis of 1412 procedures. Hepat Mon 12 (1):32-37. https://doi.org/10.5812/kowsar.1735143x.4388
    Article PubMed PubMed Central Google Scholar
  4. Chang Y, Kim JI, Lee B, Kim SG, Jung MJ, Kim YS, Jeong SW, Jang JY, Yoo JJ (2020) Clinical application of ultrasonography-guided percutaneous liver biopsy and its safety over 18 years. Clin Mol Hepatol 26 (3):318-327. https://doi.org/10.3350/cmh.2019.0019n
    Article PubMed PubMed Central Google Scholar
  5. Wong VW, Adams LA, de Ledinghen V, Wong GL, Sookoian S (2018) Noninvasive biomarkers in NAFLD and NASH - current progress and future promise. Nat Rev Gastroenterol Hepatol 15 (8):461-478. https://doi.org/10.1038/s41575-018-0014-9
    Article CAS PubMed Google Scholar
  6. Holmberg SD, Lu M, Rupp LB, Lamerato LE, Moorman AC, Vijayadeva V, Boscarino JA, Henkle EM, Gordon SC, Chronic Hepatitis Cohort Study I (2013) Noninvasive serum fibrosis markers for screening and staging chronic hepatitis C virus patients in a large US cohort. Clin Infect Dis 57 (2):240-246. https://doi.org/10.1093/cid/cit245
    Article CAS PubMed Google Scholar
  7. Nguyen D, Talwalkar JA (2011) Noninvasive assessment of liver fibrosis. Hepatology 53 (6):2107-2110. https://doi.org/10.1002/hep.24401
    Article CAS PubMed Google Scholar
  8. Dhyani M, Gee MS, Misdraji J, Israel EJ, Shah U, Samir AE (2015) Feasibility study for assessing liver fibrosis in paediatric and adolescent patients using real-time shear wave elastography. J Med Imaging Radiat Oncol 59 (6):687–694; quiz 751. https://doi.org/10.1111/1754-9485.12388
  9. Hu Q, Zhu SY, Kang LK, Wang XY, Lun HM, Xu CM (2014) Non-invasive assessment of liver fibrosis using real-time tissue elastography in patients with chronic hepatitis B. Clin Radiol 69 (2):194-199. https://doi.org/10.1016/j.crad.2013.10.003
    Article CAS PubMed Google Scholar
  10. [10] Tada T, Kumada T, Toyoda H, Ito T, Sone Y, Okuda S, Tsuji N, Imayoshi Y, Yasuda E (2015) Utility of real-time shear wave elastography for assessing liver fibrosis in patients with chronic hepatitis C infection without cirrhosis: Comparison of liver fibrosis indices. Hepatol Res 45 (10):E122-129. https://doi.org/10.1111/hepr.12476
    Article CAS PubMed Google Scholar
  11. Tang A, Cloutier G, Szeverenyi NM, Sirlin CB (2015) Ultrasound Elastography and MR Elastography for Assessing Liver Fibrosis: Part 1, Principles and Techniques. AJR Am J Roentgenol 205 (1):22-32. https://doi.org/10.2214/AJR.15.14552
    Article PubMed PubMed Central Google Scholar
  12. Ding Y, Rao SX, Zhu T, Chen CZ, Li RC, Zeng MS (2015) Liver fibrosis staging using T1 mapping on gadoxetic acid-enhanced MRI compared with DW imaging. Clin Radiol 70 (10):1096-1103. https://doi.org/10.1016/j.crad.2015.04.014
    Article CAS PubMed Google Scholar
  13. Chen J, Talwalkar JA, Yin M, Glaser KJ, Sanderson SO, Ehman RL (2011) Early detection of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease by using MR elastography. Radiology 259 (3):749-756. https://doi.org/10.1148/radiol.11101942
    Article PubMed PubMed Central Google Scholar
  14. Dong J, He F, Wang L, Yue Z, Wen T, Wang R, Liu F (2019) Iodine density Changes in Hepatic and Splenic Parenchyma in Liver Cirrhosis with Dual Energy CT (DECT): A Preliminary Study. Acad Radiol 26 (7):872-877. https://doi.org/10.1016/j.acra.2018.08.018
    Article PubMed Google Scholar
  15. Lv P, Lin X, Gao J, Chen K (2012) Spectral CT: preliminary studies in the liver cirrhosis. Korean J Radiol 13 (4):434-442. https://doi.org/10.3348/kjr.2012.13.4.434
    Article PubMed PubMed Central Google Scholar
  16. Lamb P, Sahani DV, Fuentes-Orrego JM, Patino M, Ghosh A, Mendonca PR (2015) Stratification of patients with liver fibrosis using dual-energy CT. IEEE Trans Med Imaging 34 (3):807-815. https://doi.org/10.1109/TMI.2014.2353044
    Article PubMed Google Scholar
  17. Asbach P, Klatt D, Schlosser B, Biermer M, Muche M, Rieger A, Loddenkemper C, Somasundaram R, Berg T, Hamm B, Braun J, Sack I (2010) Viscoelasticity-based staging of hepatic fibrosis with multifrequency MR elastography. Radiology 257 (1):80-86. https://doi.org/10.1148/radiol.10092489
    Article PubMed Google Scholar
  18. Motosugi U, Ichikawa T, Muhi A, Sano K, Morisaka H, Ichikawa S, Araki T (2012) Magnetic resonance elastography as a predictor of insufficient liver enhancement on gadoxetic acid-enhanced hepatocyte-phase magnetic resonance imaging in patients with type C hepatitis and Child-Pugh class A disease. Invest Radiol 47 (10):566-570. https://doi.org/10.1097/RLI.0b013e318260ac9e
    Article CAS PubMed Google Scholar
  19. Motosugi U, Ichikawa T, Koshiishi T, Sano K, Morisaka H, Ichikawa S, Enomoto N, Matsuda M, Fujii H, Araki T (2013) Liver stiffness measured by magnetic resonance elastography as a risk factor for hepatocellular carcinoma: a preliminary case-control study. Eur Radiol 23 (1):156-162. https://doi.org/10.1007/s00330-012-2571-6
    Article PubMed Google Scholar
  20. Godfrey EM, Patterson AJ, Priest AN, Davies SE, Joubert I, Krishnan AS, Griffin N, Shaw AS, Alexander GJ, Allison ME, Griffiths WJ, Gimson AE, Lomas DJ (2012) A comparison of MR elastography and 31P MR spectroscopy with histological staging of liver fibrosis. Eur Radiol 22 (12):2790-2797. https://doi.org/10.1007/s00330-012-2527-x
    Article PubMed Google Scholar
  21. Rustogi R, Horowitz J, Harmath C, Wang Y, Chalian H, Ganger DR, Chen ZE, Bolster BD, Jr., Shah S, Miller FH (2012) Accuracy of MR elastography and anatomic MR imaging features in the diagnosis of severe hepatic fibrosis and cirrhosis. J Magn Reson Imaging 35 (6):1356-1364. https://doi.org/10.1002/jmri.23585
    Article PubMed PubMed Central Google Scholar
  22. Faria SC, Ganesan K, Mwangi I, Shiehmorteza M, Viamonte B, Mazhar S, Peterson M, Kono Y, Santillan C, Casola G, Sirlin CB (2009) MR imaging of liver fibrosis: current state of the art. Radiographics 29 (6):1615-1635. https://doi.org/10.1148/rg.296095512
    Article PubMed Google Scholar
  23. Bandula S, Punwani S, Rosenberg WM, Jalan R, Hall AR, Dhillon A, Moon JC, Taylor SA (2015) Equilibrium contrast-enhanced CT imaging to evaluate hepatic fibrosis: initial validation by comparison with histopathologic sampling. Radiology 275 (1):136-143. https://doi.org/10.1148/radiol.14141435
    Article PubMed Google Scholar
  24. Yoon JH, Lee JM, Klotz E, Jeon JH, Lee KB, Han JK, Choi BI (2015) Estimation of hepatic extracellular volume fraction using multiphasic liver computed tomography for hepatic fibrosis grading. Invest Radiol 50 (4):290-296. https://doi.org/10.1097/RLI.0000000000000123
    Article PubMed Google Scholar
  25. Guo SL, Su LN, Zhai YN, Chirume WM, Lei JQ, Zhang H, Yang L, Shen XP, Wen XX, Guo YM (2017) The clinical value of hepatic extracellular volume fraction using routine multiphasic contrast-enhanced liver CT for staging liver fibrosis. Clin Radiol 72 (3):242-246. https://doi.org/10.1016/j.crad.2016.10.003
    Article CAS PubMed Google Scholar
  26. Shinagawa Y, Sakamoto K, Sato K, Ito E, Urakawa H, Yoshimitsu K (2018) Usefulness of new subtraction algorithm in estimating degree of liver fibrosis by calculating extracellular volume fraction obtained from routine liver CT protocol equilibrium phase data: Preliminary experience. Eur J Radiol 103:99-104. https://doi.org/10.1016/j.ejrad.2018.04.012
    Article PubMed Google Scholar
  27. Sofue K, Tsurusaki M, Mileto A, Hyodo T, Sasaki K, Nishii T, Chikugo T, Yada N, Kudo M, Sugimura K, Murakami T (2018) Dual-energy computed tomography for non-invasive staging of liver fibrosis: Accuracy of iodine density measurements from contrast-enhanced data. Hepatol Res 48 (12):1008-1019. https://doi.org/10.1111/hepr.13205
    Article PubMed Google Scholar
  28. Varenika V, Fu Y, Maher JJ, Gao D, Kakar S, Cabarrus MC, Yeh BM (2013) Hepatic fibrosis: evaluation with semiquantitative contrast-enhanced CT. Radiology 266 (1):151-158. https://doi.org/10.1148/radiol.12112452
    Article PubMed PubMed Central Google Scholar
  29. Marin D, Boll DT, Mileto A, Nelson RC (2014) State of the art: dual-energy CT of the abdomen. Radiology 271 (2):327-342. https://doi.org/10.1148/radiol.14131480
    Article PubMed Google Scholar
  30. Bak S, Kim JE, Bae K, Cho JM, Choi HC, Park MJ, Choi HY, Shin HS, Lee SM, Kim HO (2020) Quantification of liver extracellular volume using dual-energy CT: utility for prediction of liver-related events in cirrhosis. Eur Radiol. https://doi.org/10.1007/s00330-020-06876-9
    Article PubMed Google Scholar
  31. Bottari A, Silipigni S, Carerj ML, Cattafi A, Maimone S, Marino MA, Mazziotti S, Pitrone A, Squadrito G, Ascenti G (2020) Dual-source dual-energy CT in the evaluation of hepatic fractional extracellular space in cirrhosis. Radiol Med 125 (1):7-14. https://doi.org/10.1007/s11547-019-01089-7doi:
    Article PubMed Google Scholar
  32. Zhao LQ, He W, Yan B, Wang HY, Wang J (2013) The evaluation of haemodynamics in cirrhotic patients with spectral CT. Br J Radiol 86 (1028):20130228. https://doi.org/10.1259/bjr.20130228
    Article PubMed PubMed Central Google Scholar
  33. Kamath PS, Wiesner RH, Malinchoc M, Kremers W, Therneau TM, Kosberg CL, D'Amico G, Dickson ER, Kim WR (2001) A model to predict survival in patients with end-stage liver disease. Hepatology 33 (2):464-470. https://doi.org/10.1053/jhep.2001.22172
    Article CAS PubMed Google Scholar
  34. Wiesner R, Edwards E, Freeman R, Harper A, Kim R, Kamath P, Kremers W, Lake J, Howard T, Merion RM, Wolfe RA, Krom R, United Network for Organ Sharing Liver Disease Severity Score C (2003) Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 124 (1):91-96. https://doi.org/10.1053/gast.2003.50016
    Article PubMed Google Scholar
  35. Patel BN, Rosenberg M, Vernuccio F, Ramirez-Giraldo JC, Nelson R, Farjat A, Marin D (2018) Characterization of Small Incidental Indeterminate Hypoattenuating Hepatic Lesions: Added Value of Single-Phase Contrast-Enhanced Dual-Energy CT Material Attenuation Analysis. AJR Am J Roentgenol 211 (3):571-579. https://doi.org/10.2214/AJR.17.19170
    Article PubMed Google Scholar
  36. Patel BN, Vernuccio F, Meyer M, Godwin B, Rosenberg M, Rudnick N, Harring S, Nelson R, Ramirez-Giraldo JC, Farjat A, Marin D (2019) Dual-Energy CT Material Density Iodine Quantification for Distinguishing Vascular From Nonvascular Renal Lesions: Normalization Reduces Intermanufacturer Threshold Variability. AJR Am J Roentgenol 212 (2):366-376. https://doi.org/10.2214/AJR.18.20115
    Article PubMed Google Scholar
  37. Zissen MH, Wang ZJ, Yee J, Aslam R, Monto A, Yeh BM (2013) Contrast-enhanced CT quantification of the hepatic fractional extracellular space: correlation with diffuse liver disease severity. AJR Am J Roentgenol 201 (6):1204-1210. https://doi.org/10.2214/AJR.12.10039
    Article PubMed PubMed Central Google Scholar
  38. Smith AD, Zand KA, Florez E, Sirous R, Shlapak D, Souza F, Roda M, Bryan J, Vasanji A, Griswold M, Lirette ST (2017) Liver Surface Nodularity Score Allows Prediction of Cirrhosis Decompensation and Death. Radiology 283 (3):711-722. https://doi.org/10.1148/radiol.2016160799
    Article PubMed Google Scholar
  39. Lubner MG, Jones D, Kloke J, Said A, Pickhardt PJ (2019) CT texture analysis of the liver for assessing hepatic fibrosis in patients with hepatitis C virus. Br J Radiol 92 (1093):20180153. https://doi.org/10.1259/bjr.20180153
    Article PubMed Google Scholar
  40. Pickhardt PJ, Graffy PM, Said A, Jones D, Welsh B, Zea R, Lubner MG (2019) Multiparametric CT for Noninvasive Staging of Hepatitis C Virus-Related Liver Fibrosis: Correlation With the Histopathologic Fibrosis Score. AJR Am J Roentgenol 212 (3):547-553. https://doi.org/10.2214/AJR.18.20284
    Article PubMed PubMed Central Google Scholar
  41. Ulku A, Akcam AT (2019) Importance of Multislice Computed Tomography in Determining the Severity of Chronic Liver Disease State. Transplant Proc 51 (7):2408-2412. https://doi.org/10.1016/j.transproceed.2019.01.166
    Article PubMed Google Scholar
  42. Wm T, L S, C K, K E, T H, H B, T K, K N, M H, S K (2019) Quantification of Hemodynamic Changes in Chronic Liver Disease: Correlation of Perfusion-CT Data with Histopathologic Staging of Fibrosis. Acad Radiol 26 (9):1174-1180. https://doi.org/10.1016/j.acra.2018.11.009
    Article Google Scholar
  43. Coursey CA, Nelson RC, Boll DT, Paulson EK, Ho LM, Neville AM, Marin D, Gupta RT, Schindera ST (2010) Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics 30 (4):1037-1055. https://doi.org/10.1148/rg.304095175
    Article PubMed Google Scholar
  44. Patino M, Prochowski A, Agrawal MD, Simeone FJ, Gupta R, Hahn PF, Sahani DV (2016) Material Separation Using Dual-Energy CT: Current and Emerging Applications. Radiographics 36 (4):1087-1105. https://doi.org/10.1148/rg.2016150220
    Article PubMed Google Scholar
  45. Liu X, Yu L, Primak AN, McCollough CH (2009) Quantitative imaging of element composition and mass fraction using dual-energy CT: three-material decomposition. Med Phys 36 (5):1602-1609. https://doi.org/10.1118/1.3097632
    Article PubMed PubMed Central Google Scholar
  46. Pelgrim GJ, van Hamersvelt RW, Willemink MJ, Schmidt BT, Flohr T, Schilham A, Milles J, Oudkerk M, Leiner T, Vliegenthart R (2017) Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT. Eur Radiol 27 (9):3904-3912. https://doi.org/10.1007/s00330-017-4752-9
    Article PubMed PubMed Central Google Scholar
  47. Marin D, Pratts-Emanuelli JJ, Mileto A, Husarik DB, Bashir MR, Nelson RC, Boll DT (2015) Interdependencies of acquisition, detection, and reconstruction techniques on the accuracy of iodine quantification in varying patient sizes employing dual-energy CT. Eur Radiol 25 (3):679-686. https://doi.org/10.1007/s00330-014-3447-8
    Article PubMed Google Scholar
  48. Yoshikawa J, Matsui O, Kadoya M, Gabata https://doi.org/10.1097/00004728-199203000-00006T, Arai K, Takashima T (1992) Delayed enhancement of fibrotic areas in hepatic masses: CT-pathologic correlation. J Comput Assist Tomogr 16 (2):206-211.
    Article CAS PubMed Google Scholar
  49. Brancatelli G, Baron RL, Federle MP, Sparacia G, Pealer K (2009) Focal confluent fibrosis in cirrhotic liver: natural history studied with serial CT. AJR Am J Roentgenol 192 (5):1341-1347. https://doi.org/10.2214/AJR.07.2782
    Article PubMed Google Scholar
  50. Mendonca PR, Lamb P, Sahani DV (2014) A Flexible Method for Multi-Material Decomposition of Dual-Energy CT Images. IEEE Trans Med Imaging 33 (1):99-116.https://doi.org/10.1109/TMI.2013.2281719
    Article PubMed Google Scholar

Download references