Pediocin-like bacteriocins: new perspectives on mechanism of action and immunity (original) (raw)
Acuña L, Picariello G, Sesma F et al (2012) A new hybrid bacteriocin, Ent35-MccV, displays antimicrobial activity against pathogenic Gram-positive and Gram-negative bacteria. FEBS Open Bio 2:12–19. doi:10.1016/j.fob.2012.01.002 ArticlePubMedPubMed Central Google Scholar
Barraza DE, Ríos Colombo NS, Galván AE et al (2017) New insights into enterocin CRL35; mechanism of action and immunity revealed by heterologous expression in Escherichia coli. Mol Microbiol. doi:10.1111/mmi.13746 PubMed Google Scholar
Bhunia AK, Johnson MC, Ray B, Kalchayanand N (1991) Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. J Appl Bacteriol 70:25–33 ArticleCAS Google Scholar
Bruno ME, Montville TJ (1993) Common mechanistic action of bacteriocins from lactic Acid bacteria. Appl Environ Microbiol 59:3003–3010 CASPubMedPubMed Central Google Scholar
Chalón MC, Acuña L, Morero RD et al (2012) Membrane-active bacteriocins to control Salmonella in foods: are they the definite hurdle? Food Res Int 45:735–744. doi:10.1016/j.foodres.2011.08.024 Article Google Scholar
Chen Y, Ludescher RD, Montville TJ (1997) Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospholipid vesicles. Appl Environ Microbiol 63:4770–4777 CASPubMedPubMed Central Google Scholar
Chen Y, Ludescher RD, Montville TJ (1998) Influence of lipid composition on pediocin PA-1 binding to phospholipid vesicles. Appl Environ Microbiol 64:3530–3532 CASPubMedPubMed Central Google Scholar
Chikindas ML, Garcia-Garcera MJ, Driessen AJ et al (1993) Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl Environ Microbiol 59:3577–3584 CASPubMedPubMed Central Google Scholar
Dalet K, Briand C, Cenatiempo Y, Héchard Y (2000) The _rpo_N gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins. Curr Microbiol 41:441–443 ArticleCASPubMed Google Scholar
Dalet K, Cenatiempo Y, Cossart P, Hechard Y (2001) A sigma(54)-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147:3263–3269 ArticleCASPubMed Google Scholar
Diep DB, Håvarstein LS, Nes IF (1995) A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol 18:631–639 ArticleCAS Google Scholar
Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S (2007) Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 24:708–734. doi:10.1039/b516237h ArticleCASPubMed Google Scholar
Fimland G, Eijsink VGH, Nissen-Meyer J (2002) Comparative studies of immunity proteins of pediocin-like bacteriocins. Microbiology (Reading, Engl) 148:3661–3670. doi:10.1099/00221287-148-11-3661 ArticleCAS Google Scholar
Fimland G, Johnsen L, Dalhus B, Nissen-Meyer J (2005) Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J Pept Sci 11:688–696. doi:10.1002/psc.699 ArticleCASPubMed Google Scholar
Fregeau Gallagher NL, Sailer M, Niemczura WP et al (1997) Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry 36:15062–15072. doi:10.1021/bi971263h ArticleCASPubMed Google Scholar
Haugen HS, Fimland G, Nissen-Meyer J, Kristiansen PE (2005) Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide curvacin A. Biochemistry 44:16149–16157. doi:10.1021/bi051215u ArticleCASPubMed Google Scholar
Johnsen L, Dalhus B, Leiros I, Nissen-Meyer J (2005a) 1.6-Angstroms crystal structure of EntA-im. A bacterial immunity protein conferring immunity to the antimicrobial activity of the pediocin-like bacteriocin enterocin A. J Biol Chem 280:19045–19050. doi:10.1074/jbc.M501386200 ArticleCASPubMed Google Scholar
Johnsen L, Fimland G, Nissen-Meyer J (2005b) The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J Biol Chem 280:9243–9250. doi:10.1074/jbc.M412712200 ArticleCASPubMed Google Scholar
Kjos M, Nes IF, Diep DB (2009) Class II one-peptide bacteriocins target a phylogenetically defined subgroup of mannose phosphotransferase systems on sensitive cells. Microbiology (Reading, Engl) 155:2949–2961. doi:10.1099/mic.0.030015-0 ArticleCAS Google Scholar
Kjos M, Salehian Z, Nes IF, Diep DB (2010) An extracellular loop of the mannose phosphotransferase system component IIC is responsible for specific targeting by class IIa bacteriocins. J Bacteriol 192:5906–5913. doi:10.1128/JB.00777-10 ArticleCASPubMedPubMed Central Google Scholar
Kjos M, Borrero J, Opsata M et al (2011) Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria. Microbiology (Reading, Engl) 157:3256–3267. doi:10.1099/mic.0.052571-0 ArticleCAS Google Scholar
Masias E, Dupuy FG, da Silva Sanches PR et al (2017) Impairment of the class IIa bacteriocin receptor function and membrane structural changes are associated to enterocin CRL35 high resistance in Listeria monocytogenes. Biochim Biophys Acta. doi:10.1016/j.bbagen.2017.03.014 PubMed Google Scholar
Minahk CJ, Farías ME, Sesma F, Morero RD (2000) Effect of enterocin CRL35 on Listeria monocytogenes cell membrane. FEMS Microbiol Lett 192:79–83 ArticleCASPubMed Google Scholar
Moll GN, Konings WN, Driessen AJ (1999) Bacteriocins: mechanism of membrane insertion and pore formation. Antonie Van Leeuwenhoek 76:185–198 ArticleCASPubMed Google Scholar
Nes IF, Diep DB, Håvarstein LS et al (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70:113–128 ArticleCASPubMed Google Scholar
Nissen-Meyer J, Håvarstein LS, Holo H et al (1993) Association of the lactococcin A immunity factor with the cell membrane: purification and characterization of the immunity factor. J Gen Microbiol 139:1503–1509. doi:10.1099/00221287-139-7-1503 ArticleCASPubMed Google Scholar
Quadri LE, Sailer M, Terebiznik MR et al (1995) Characterization of the protein conferring immunity to the antimicrobial peptide carnobacteriocin B2 and expression of carnobacteriocins B2 and BM1. J Bacteriol 177:1144–1151 ArticleCASPubMedPubMed Central Google Scholar
Ramnath M, Beukes M, Tamura K, Hastings JW (2000) Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl Environ Microbiol 66:3098–3101 ArticleCASPubMedPubMed Central Google Scholar
Ramnath M, Arous S, Gravesen A et al (2004) Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis. Microbiology (Reading, Engl) 150:2663–2668. doi:10.1099/mic.0.27002-0 ArticleCAS Google Scholar
Riley MA, Gordon DM (1999) The ecological role of bacteriocins in bacterial competition. Trends Microbiol 7:129–133 ArticleCASPubMed Google Scholar
Shanker E, Federle MJ (2017) Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes (Basel). doi:10.3390/genes8010015 Google Scholar
Sprules T, Kawulka KE, Vederas JC (2004) NMR solution structure of ImB2, a protein conferring immunity to antimicrobial activity of the type IIa bacteriocin, carnobacteriocin B2. Biochemistry 43:11740–11749. doi:10.1021/bi048854+ ArticleCASPubMed Google Scholar
Stevens KA, Sheldon BW, Klapes NA, Klaenhammer TR (1991) Nisin treatment for inactivation of Salmonella species and other Gram-negative bacteria. Appl Environ Microbiol 57:3613–3615 CASPubMedPubMed Central Google Scholar
Tessema GT, Møretrø T, Kohler A et al (2009) Complex phenotypic and genotypic responses of Listeria monocytogenes strains exposed to the class IIa bacteriocin sakacin P. Appl Environ Microbiol 75:6973–6980. doi:10.1128/AEM.00608-09 ArticleCASPubMedPubMed Central Google Scholar
Uteng M, Hauge HH, Markwick PRL et al (2003) Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry 42:11417–11426. doi:10.1021/bi034572i ArticleCASPubMed Google Scholar
Vadyvaloo V, Hastings JW, van der Merwe MJ, Rautenbach M (2002) Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl Environ Microbiol 68:5223–5230 ArticleCASPubMedPubMed Central Google Scholar
Vadyvaloo V, Arous S, Gravesen A et al (2004) Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains. Microbiology (Reading, Engl) 150:3025–3033. doi:10.1099/mic.0.27059-0 ArticleCAS Google Scholar
Venema K, Kok J, Marugg JD et al (1995) Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1.0: PedB is the immunity protein and PedD is the precursor processing enzyme. Mol Microbiol 17:515–522 ArticleCASPubMed Google Scholar
Wang Y, Henz ME, Gallagher NL et al (1999) Solution structure of carnobacteriocin B2 and implications for structure-activity relationships among type IIa bacteriocins from lactic acid bacteria. Biochemistry 38:15438–15447 ArticleCASPubMed Google Scholar