A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining (original) (raw)

Abstract

A remarkable feature of material damage induced by short-pulsed lasers is that the energy threshold becomes deterministic for sub-picosecond pulses. This effect, coupled with the advent of kHz and higher repetition rate chirped pulse amplification systems, has opened the field of femtosecond machining. Yet the mechanism of optical breakdown remains unclear. By examining the damage threshold as a function of polarization, we find that, contrary to established belief, multiphoton ionization plays an insignificant role in optical breakdown. The polarization independence, combined with the observed precise and uniform dielectric breakdown threshold even for nanometer-scale features, leads us to conclude that the fundamental mechanism is ‘self-terminated’ Zener-impact ionization, and that the deterministic and uniform damage threshold throughout the sample threshold stems from the uniform valence-electron density found in good-quality optical materials. By systematically exploring optical breakdown near threshold, we find that we can consistently machine features as small as 20 nm, demonstrating great promise for applications ranging from Micro ElectroMechanical Systems (MEMS) construction and microelectronics, to targeted disruption of cellular structures and genetic material.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou: Appl. Phys. Lett. 64, 3071 (1994)
    Article ADS Google Scholar
  2. E.N. Glezer, M. Milosavljevic, L. Huang, R.L. Finlay, H.H. Her, J.P. Callan, E. Mazur: ed. by P.F. Barbara (Springer, New York 1996) p. 157
  3. W. Kautek, J. Krueger: Mater. Sci. Forum 173174, 17 (1995)
  4. X. Liu, D. Du, G. Mourou: IEEE J. Quantum Electron. QE-33, 1706 (1997)
  5. C. Momma, B.N. Chichkov, S. Nolte, F. Alvensleben, A. Tunnermann, H. Welling, B. Wellengehausen: Opt. Commun. 129, 134 (1996)
    Article ADS Google Scholar
  6. S. Nakamura, T. Okamoto, H. Kumagai, K. Midorikawa, M. Obara, K. Toyoda: Appl. Phys. Lett. 65, 1850 (1994)
    Article ADS Google Scholar
  7. B. Stuart, M. Feit, A. Rubenchik, B. Shore, M. Perry: Phys. Rev. Lett. 74, 2248 (1995)
    Article ADS Google Scholar
  8. D. Du, J. Squier, R. Kurtz, V. Elner, X. Liu, G. Gutmann, G. Mourou: ed. by P.F. Barbara (Springer, New York 1995) p. 254
  9. P. Pronko, S. Dutta, J. Squier, J. Rudd, D. Du, G. Mourou: Opt. Commun. 114, 106 (1995)
    Article ADS Google Scholar
  10. K. Venkatakrishnan, B. Tran, P. Stanley, N. Sivakumar: J. Appl. Phys. 92, 1604 (2002)
    Article ADS Google Scholar
  11. K. Konig, I. Riemann, W. Fritzsche: Opt. Lett. 26, 819 (2001)
    Article ADS Google Scholar
  12. N. Bloembergen: IEEE J. Quantum Electron. QE-10, 375 (1974)
  13. J. Squier, F. Salin, G. Mourou, H.H. Her: Opt. Lett. 16, 324 (1991)
    Article ADS Google Scholar
  14. K.K. Thornber: J. Appl. Phys. 52, 279 (1981)
    Article ADS Google Scholar
  15. M. Lenzner, S. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz: Phys. Rev. Lett. 80, 4076 (1998)
    Article ADS Google Scholar
  16. A. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou: Phys. Rev. Lett. 82, 3883 (1999)
    Article ADS Google Scholar
  17. D. Du: Doctoral Thesis, Physics, University of Michigan (1996)
  18. L. Lompré, G. Mainfray, C. Manus, J. Thebault: Phys. Rev. A 15, 1604 (1977)
    Article ADS Google Scholar
  19. C. Schaffer, A. Brodeur, J. Garcia, E. Mazur: Opt. Lett. 26, 93 (2001)
    Article ADS Google Scholar
  20. D. Du, X. Liu, G. Mourou: Appl. Phys. B 63, 617 (1996)
    Article ADS Google Scholar
  21. A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon: Phys. Rev. B 61, 437 (2000)
    Article Google Scholar
  22. L. Keldysh: Sov. Phys. JETP 20, 1307 (1965)
    MathSciNet Google Scholar
  23. J. Fritzsche: J. Non-Cryst. Solids 6, 49 (1971)
    Article ADS Google Scholar
  24. G.J. Brouhard, H.T. Schek, A.J. Hunt: IEEE Trans. Biomed. Eng. 50, 121 (2003)
    Article Google Scholar

Download references

Author information

Authors and Affiliations

  1. 300, N. Ingalls, 952, 48109, Ann Arbor, MI, USA
    A.P. Joglekar
  2. IST, 2200, Bonisteel Blvd., 48109-2099, Ann Arbor, MI, USA
    H. Liu , G.J. Spooner & G. Mourou
  3. 3130 GG Brown Lab/2125, 48109, Ann Arbor, MI, USA
    E. Meyhöfer
  4. 2131 Gerstacker, 2200 Bonisteel Blvd., 48109, Ann Arbor, MI, USA
    A.J. Hunt

Authors

  1. A.P. Joglekar
    You can also search for this author inPubMed Google Scholar
  2. H. Liu
    You can also search for this author inPubMed Google Scholar
  3. G.J. Spooner
    You can also search for this author inPubMed Google Scholar
  4. E. Meyhöfer
    You can also search for this author inPubMed Google Scholar
  5. G. Mourou
    You can also search for this author inPubMed Google Scholar
  6. A.J. Hunt
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toA.J. Hunt .

Additional information

PACS

32.80.Rm; 77.22.Jp; 81.16.-c

Rights and permissions

About this article

Cite this article

Joglekar , A., Liu , H., Spooner , G. et al. A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining.Appl. Phys. B 77, 25–30 (2003). https://doi.org/10.1007/s00340-003-1246-z

Download citation

Keywords