Magnetic activation in the brain of the migratory northern wheatear (Oenanthe oenanthe) (original) (raw)
Bairlein F (1986) Ein standardisiertes futter für ernährungsuntersuchungen an omnivoren kleinvögeln. J Ornithol 127:338–340 Article Google Scholar
Bairlein F, Norris DR, Nagel R, Bulte M, Voigt CC, Fox JW, Hussell DJT, Schmaljohann H (2012) Cross-hemisphere migration of a 25 g songbird. Biol Lett 8:505–507 ArticlePubMedPubMed Central Google Scholar
Bairlein F, Dierschke V, Delingat J, Eikenaar C, Maggini I, Bulte M, Schmaljohann H (2013) Revealing the control of migratory fueling: an integrated approach combining laboratory and field studies in northern wheatears Oenanthe oenanthe. Curr Zool 59:381–392 Article Google Scholar
Bolte P, Bleibaum F, Einwich A, Günther A, Liedvogel M, Heyers D, Depping A, Wöhlbrand L, Rabus R, Janssen-Bienhold U, Mouritsen H (2016) Localisation of the putative magnetoreceptive protein cryptochrome 1b in the retinae of migratory birds and homing pigeons. PLoS ONE 11:e0147819 ArticlePubMedPubMed Central Google Scholar
Boström JE, Fransson T, Henshaw I, Jakobsson S, Kullberg C, Åkesson S (2010) Autumn migratory fuelling: a response to simulated magnetic displacements in juvenile wheatears, Oenanthe oenanthe. Behav Ecol Sociobiol 64:1725–1732 Article Google Scholar
Boström JE, Åkesson S, Alerstam T (2012) Where on earth can animals use a geomagnetic bicoordinate map for navigation? Ecography 35:1039–1047 Article Google Scholar
Bulte M, Heyers D, Mouritsen H, Bairlein F (2017) Geomagnetic information modulates nocturnal migratory restlessness but not fueling in a long distance migratory songbird. J Avian Biol 48:75–82 Article Google Scholar
Chernetsov N, Kishkinev D, Mouritsen H (2008) A long-distance avian migrant compensates for longitudinal displacement during spring migration. Curr Biol 18:188–190 ArticleCASPubMed Google Scholar
Cochran WW, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408 ArticleCASPubMed Google Scholar
Conder P (1989) The wheatear. Christopher Helm, London Google Scholar
Dierschke V, Delingat J (2001) Stopover behaviour and departure decision of northern wheatears Oenanthe oenanthe, facing different onward non-stop flight distances. Behav Ecol Sociobiol 50:535–545 Article Google Scholar
Engels S, Schneider NL, Lefeldt N, Hein CM, Zapka M, Michalik A, Elbers D, Kittel A, Hore PJ, Mouritsen H (2014) Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509:353–356 ArticleCASPubMed Google Scholar
Falkenberg G, Fleissner G, Schuchardt K, Kuehbacher M, Thalau P, Mouritsen H, Heyers D, Wellenreuther G, Fleissner G (2010) Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLoS ONE 5:9231 Article Google Scholar
Feenders G, Liedvogel M, Rivas M, Zapka M, Horita H, Hara E, Wada K, Mouritsen H, Jarvis ED (2008) Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin. PLoS ONE 3:e1768 ArticlePubMedPubMed Central Google Scholar
Fleissner G, Holtkamp-Rötzler E, Hanzlik M, Winklhofer M, Fleissner G, Petersen N, Wiltschko W (2003) Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 458:350–360 ArticleCASPubMed Google Scholar
Fleissner G, Stahl B, Thalau P, Falkenberg G, Fleissner G (2007) A novel concept of Fe-mineralbased magnetoreception: histological and physicochemical data from the upper beak of homing pigeons. Naturwissenschaften 94:631–642 ArticleCASPubMed Google Scholar
Güntürkün O (2000) Sensory physiology: vision. In: Whittow GC (ed) Sturkje´s avian physiology. Academic press, Orlando, pp 1–19 Google Scholar
Güntürkün O, Miceli D, Watanabe M (1993) Anatomy of the avian thalamofugal pathway. In: Zeigler HP, Bischof HJ (eds) Vision, brain and behavior in birds. MIT, Cambridge, pp 115–135 Google Scholar
Hein CM, Zapka M, Heyers D, Kutzschbauch S, Schneider NL, Mouritsen H (2010) Night-migratory garden warblers can orient with their magnetic compass using the left, the right or both eyes. J R Soc Interface 7(2):S227–S233 ArticlePubMed Google Scholar
Heyers D, Manns M, Luksch H, Gűntűrkűn O, Mouritsen H (2007) A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PLoS ONE 2:937 Article Google Scholar
Heyers D, Manns M, Luksch H, Güntürkün O, Mouritsen H (2008) Calcium-binding proteins label functional streams of the visual system in a songbird. Brain Res Bull 75:348–355 ArticleCASPubMed Google Scholar
Heyers D, Zapka M, Hoffmeister M, Wild JM, Mouritsen H (2010) Magnetic field changes activate the trigeminal brainstem complex in a migratory bird. Proc Nat Acad Sci USA 107:9394–9399 ArticleCASPubMedPubMed Central Google Scholar
Heyers D, Elbers D, Bulte M, Bairlein F, Mouritsen H (2017) The magnetic map sense and its use in fine-tuning the migration programme of birds. J Comp Physiol A. doi:10.1007/s00359-017-1164-x Google Scholar
Hore PJ, Mouritsen H (2016) The radical pair mechanism of magnetoreception. Annu Rev Biophys 45:299–344 ArticleCASPubMed Google Scholar
Kattnig DR, Evans EW, Dejean V, Dodson CA, Wallace MI, Mackenzie SR, Timmel CR, Hore PJ (2016) Chemical amplification of magnetic field effects relevant to avian magnetoreception. Nature Chem 8:384–391 ArticleCAS Google Scholar
Keith S, Urban EK, Fry CH (1996) Birds of africa, vol 4. Academic Press, London Google Scholar
Kirschvink JL (1992) Uniform magnetic fields and double-wrapped coil systems: improved techniques for the design of bioelectromagnetic experiments. Bioelectromagnetics 13:401–411 ArticleCASPubMed Google Scholar
Kirschvink JL, Gould JL (1981) Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 13:181–201 ArticleCASPubMed Google Scholar
Kirschvink JL, Walker MM, Diebel CE (2001) Magnetite-based magnetoreception. Curr Opin Neurobiol 11:462–467 ArticleCASPubMed Google Scholar
Kishkinev D, Chernetsov N, Mouritsen H (2010) A double clock or jetlag mechanism is unlikely to be involved in detection of east-west displacements in a long-distance avian migrant. Auk 127:773–780 Article Google Scholar
Kishkinev D, Chernetsov N, Heyers D, Mouritsen H (2013) Migratory reed warblers need intact trigeminal nerves to compensate for a 1000 km displacement. PLoS ONE 8:e65847 ArticleCASPubMedPubMed Central Google Scholar
Kishkinev D, Chernetsov N, Pakhomov A, Heyers D, Mouritsen H (2015) Eurasian reed warblers compensate for virtual magnetic displacement. Curr Biol 25:R822–R824 ArticleCASPubMed Google Scholar
Kishkinev D, Heyers D, Woodworth BK, Mitchell GW, Hobson A, Norris DR (2016) Experienced migratory songbirds do not display goal-ward orientation after release following a cross-continental displacement: an automated telemetry study. Sci Rep 6:37326 ArticleCASPubMedPubMed Central Google Scholar
Lefeldt N, Heyers D, Schneider NL, Engels S, Elbers D, Mouritsen H (2014) Magnetic field-driven induction of ZENK in the trigeminal system of pigeons (Columba livia). J R Soc Interface 11:20140777 ArticlePubMedPubMed Central Google Scholar
Liedvogel M, Feenders G, Wada K, Troje NF, Jarvis ED, Mouritsen H (2007a) Lateralized activation of cluster n in the brains of migratory songbirds. Eur J Neurosci 25:1166–1173 ArticlePubMedPubMed Central Google Scholar
Liedvogel M, Maeda K, Henbest K, Schleicher E, Simon T, Timmel CR, Hore PJ, Mouritsen H (2007b) Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs. PLoS ONE 2:e1106 ArticlePubMedPubMed Central Google Scholar
Maeda K, Robinson AJ, Henbest KB, Hogben HJ, Biskup T, Ahmad M, Schleicher E, Weber S, Timmel CR, Hore PJ (2012) Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc Natl Acad Sci USA 109:4774–4779 ArticleCASPubMedPubMed Central Google Scholar
Maggini I, Metzger B, Voss M, Voigt CC, Bairlein F (2016) Morphometrics and stable isotopes differentiate wintering populations of a migratory bird. Movement Ecol 4:20 Article Google Scholar
Mello CV, Ribeiro S (1998) ZENK protein regulation by song in the brain of songbirds. J Comp Neurol 393:426–438 ArticleCASPubMed Google Scholar
Mello CV, Vicario DS, Clayton DF (1992) Song presentation induces gene expression in the songbird forebrain. Proc Natl Acad Sci USA 89:6818–6822 ArticleCASPubMedPubMed Central Google Scholar
Mora CV, Davison M, Wild JM, Walker MM (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511 ArticleCASPubMed Google Scholar
Mouritsen H, Hore PJ (2012) The magnetic retina: light-dependent and trigeminal magnetoreception in migratory birds. Curr Opin Neurobiol 22:343–352 ArticleCASPubMed Google Scholar
Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J, Dirks P, Weiler R (2004a) Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc Natl Acad Sci USA 101:14294–14299 ArticleCASPubMedPubMed Central Google Scholar
Mouritsen H, Feenders G, Liedvogel M, Kropp W (2004b) Migratory birds use head scans to detect the direction of the earth´s magnetic field. Curr Biol 14:1946–1949 ArticleCASPubMed Google Scholar
Mouritsen H, Feenders G, Liedvogel M, Wada K, Jarvis ED (2005) Night-vision brain area in migratory songbirds. Proc Natl Acad Sci USA 102:8339–8344 ArticleCASPubMedPubMed Central Google Scholar
Mouritsen H, Heyers D, Güntürkün O (2016) The neural basis of long-distance navigation in birds. Annu Rev Physiol 78:133–154 ArticleCASPubMed Google Scholar
Nießner C, Denzau S, Gross JC, Peichl L, Bischof HJ, Fleissner G, Wiltschko W, Wiltschko R (2011) Avian ultraviolet/violet cones identified as probable magnetoreceptors. PLoS ONE 6:e20091 ArticlePubMedPubMed Central Google Scholar
Nießner C, Gross JC, Denzau S, Peichl L, Fleissner G, Wiltschko W, Wiltschko R (2016) Seasonally changing cryptochrome 1b expression in the retinal ganglion cells of a migrating passerine bird. PLoS ONE 11:e0150377 ArticlePubMedPubMed Central Google Scholar
Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martinez S (2007) The chick brain in stereotaxic coordinates: an atlas featuring neuromeric subdivisions and mammalian homologies. Academic Press, New York Google Scholar
Ramírez E, Marín G, Mpodozis J, Letelier JC (2014) Extracellular recordings reveal absence of magnetosensitive units in the avian optic tectum. J Comp Physiol 200:983–996 Article Google Scholar
Rastogi A, Kumari Y, Rani S, Kumar V (2011) Phase inversion of neural activity in the olfactory and visual systems of a night-migratory bird during migration. Eur J Neurosci 34:99–109 ArticlePubMed Google Scholar
Schmaljohann H, Dierschke V (2005) Optimal bird migration and predation risk: a field experiment with northern wheatears Oenanthe oenanthe. J Anim Ecol 74:131–138 Article Google Scholar
Schmaljohann H, Meier C, Arlt D, Bairlein F, van Oosten HH, Morbey YE, Åkesson S, Buchmann M, Chernetsov N, Desaever R, Elliott J, Hellström M, Liechti F, López A, Middleton J, Ottosson U, Pärt T, Spina F, Eikenaar C (2016) Proximate causes of avian protandry differ between subspecies with contrasting migration challenges. Behav Ecol 27:321–331 Article Google Scholar
Schwarze S, Schneider NL, Reichl T, Dreyer D, Lefeldt N, Engels S, Baker N, Hore PJ, Mouritsen H (2016) Weak broadband electromagnetic fields are more disruptive to magnetic compass orientation in a night-migratory songbird (Erithacus rubecula) than strong narrow-band fields. Front Behav Neurosci 10:55 ArticlePubMedPubMed Central Google Scholar
Shimizu T, Bowers AN, Budzynski CA, Kahn MC, Bingman VF (2004) What does a pigeon (Columba livia) brain look like during homing? selective examination of ZENK expression. Behav Neurosci 118:845–851 ArticleCASPubMed Google Scholar
Shu S, Ju G, Fan L (1988) The glucose oxidase–DAB–nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett 85:169–171 ArticleCASPubMed Google Scholar
Treiber CD, Salzer MC, Riegler J, Edelman N, Sugar C, Breuss M, Pichler P, Cadiou H, Saunders M, Lythgoe M, Shaw J, Keays DA (2012) Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484:367–370 CASPubMed Google Scholar
Treiber CD, Salzer M, Breuss M, Ushakova L, Lauwers M, Edelman N, Keays DA (2013) High resolution anatomical mapping confirms the absence of a magnetic sense system in the rostral upper beak of pigeons. Commun Integr Biol 6:e24859 ArticlePubMedPubMed Central Google Scholar
Wild JM, Zeigler HP (1996) Central projections and somatotopic organisation of trigeminal primary afferents in pigeon (Columba livia). J Comp Neurol 368:136–152 ArticleCASPubMed Google Scholar
Williams MN, Wild JM (2001) Trigeminally innervated iron-containing structures in the beak of homing pigeons, and other birds. Brain Res 889:243–246 ArticleCASPubMed Google Scholar
Zapka M, Heyers D, Hein CM, Engels S, Schneider NL, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild JM, Mouritsen H (2009) Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461:1274–1278 ArticleCASPubMed Google Scholar
Zapka M, Heyers D, Liedvogel M, Jarvis ED, Mouritsen H (2010) Night-time neuronal activation of cluster n in a day- and night-migrating songbird. Eur J Neurosci 32:619–624 ArticlePubMedPubMed Central Google Scholar