- Banai S, Jaklitsch MT, Shou M, Lazarous DF, Scheinowitz M, Biro S, Epstein SE, Unger EF (1994) Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89 (5):2183–2189
CAS PubMed Google Scholar
- Braunhut SJ, Moses MA (1994) Retinoids modulate endothelial cell production of matrix-degrading proteases and tissue inhibitors of metalloproteinases (TIMP). J Biol Chem 269:13472–13479
CAS PubMed Google Scholar
- Brinckerhoff CE, Matrisian LM (2002) Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 3:207–214
Article CAS PubMed Google Scholar
- Coker ML, Doscher MA, Thomas CV, Galis ZS, Spinale FG (1999) Matrix metalloproteinase synthesis and expression in isolated LV myocyte preparations. Am J Physiol 277:H777–H787
CAS PubMed Google Scholar
- Etoh T, Inoue H, Tanaka S, Barnard GF, Kitano S, Mori (2001) Angiopoietin-2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases. Cancer Res 61:2145–2153
CAS PubMed Google Scholar
- Fang J, Shing Y, Wiederschain D, Yan L, Butter.eld C, Jackson G, Harper J, Tamvakopoulos G, Moses MA (2000) Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci USA 97:3884–3889
CAS PubMed Google Scholar
- Fridman R, Fuerst TR, Bird RE, Hoyhtya M, Oelkut M, Kraus S, Komarek D, Liotta LA, Berman ML, Stetler-Stevenson WG (1992) Domain structure of human 72-kDa gelatinase/type IV collagenase: characterization of proteolytic activity and identification of the tissue inhibitor of metalloproteinase-2 (TIMP-2) binding regions. J Biol Chem 267:15398–15405
CAS PubMed Google Scholar
- Friehs I, Moran AM, Stamm C, Colan SD, Takeuchi K, Cao-Danh H, Rader CM, McGowan FX, del Nido PJ (1999) Impaired glucose transporter activity in pressure-overload hypertrophy is an early indicator of progression to failure. Circulation (19 Suppl) 100:II187–II193
CAS PubMed Google Scholar
- Friehs I, Stamm C, Cao-Danh H, McGowan Jr FX, del Nido PJ (2001) Insulin-like growth factor-1 improves postischemic recovery in hypertrophied hearts. Ann Thorac Surg 72:1650–1656
Article CAS PubMed Google Scholar
- Friehs I, Moran AM, Stamm C, Choi YH, Cowan DB, McGowan FX, del Nido PJ (2004) Promoting angiogenesis protects severely hypertrophied hearts from ischemic injury. Ann Thorac Surg 77:2004–2010
PubMed Google Scholar
- Haas TL, Milkiewicz M, Davis SJ, Zhou AL, Egginton S, Brown MD, Madri JA, Hudlicka O (2000) Matrix metalloproteinase activity is required for activityinduced angiogenesis in rat skeletal muscle. Am J Physiol (Heart Circ Physiol) 279:H1540–H1547
CAS Google Scholar
- Hashimoto G, Inoki I, Fujii Y, Aoki T, Ikeda E, Okada Y (2002) Matrix metalloproteinases cleave connective tissue growth factor and reactive angiogenic activity of vascular endothelial growth factor 165. J Biol Chem 277:36288–36295
CAS PubMed Google Scholar
- Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S (1998) Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58:1048–1051
CAS PubMed Google Scholar
- Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, Seiki M (2001) Membranetype 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153:893–904
Article CAS PubMed Google Scholar
- Klagsbrun M, Moses MA (1999) Molecular angiogenesis. Chem Biol 6:R217–R224
Article CAS PubMed Google Scholar
- Marcus ML, Harrison DG, Chilian WM, Koyanagi S, Inou T, Tomanek RJ, Martins JB, Eastham CL, Hiratzka LF (1987) Alterations in the coronary circulation in hypertrophied ventricles. Circulation 75:I-19–25
CAS Google Scholar
- McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Cur Opin Cell Biol 13:534–540
CAS Google Scholar
- Mignatti P, Rifkin DB (1996) Plasminogen activators and matrix metalloproteinases in angiogenesis. Enzyme Protein 49:117–137
CAS PubMed Google Scholar
- Moran AM, Friehs I, Takeuchi K, Stamm C, Hammer PE, McGowan FX, del Nido PJ, Colan SD (2003) Non-invasive serial evaluation of myocardial mechanics in pressure overload hypertrophy of rabbit myocardium. Herz 28:52–62
Article PubMed Google Scholar
- Moses MA (1997) The regulation of neovascularization by matrix metalloproteinases and their inhibitors. Stem Cells 15:180–189
Article CAS PubMed Google Scholar
- Nagase H (1997) Activation and mechanisms of matrix metalloproteinases. Biol Chem 78:151–160
Google Scholar
- Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 272:2446–2451
CAS PubMed Google Scholar
- Puyraimond A, Weitzman JB, Babiole E, Menashi S (1999) Examining the relationship between the gelatinolytic balance and the invasive capacity of endothelial cells. J Cell Sci 112:1283–1290
CAS PubMed Google Scholar
- Sang QX (1998) Complex role of matrix metalloproteinases in angiogenesis. Cell Res 8:171–177
CAS PubMed Google Scholar
- Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M (1994) A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature (London) 370:61–65
Article CAS PubMed Google Scholar
- Sounni NE, Devy L, Hajitou A, Frankenne F, Munaut C, Gilles C, Deroanne C, Thompson EW, Foidart JM, Noel A (2002) MT1-MMP expression promotes tumor growth and angiogenesis through up-regulation of vascular endothelial growth factor expression. FASEB J 16:555–564
Article CAS PubMed Google Scholar
- Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516
Article CAS PubMed Google Scholar
- Strongin AY, Collier I, Bannikow G, Marmaer BL, Grant GA, Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270:5331–5338
CAS PubMed Google Scholar
- Stetler-Stevenson WG (1996) Dynamics of matrix turnover during pathologic remodeling of the extracellular matrix. Am J Pathol 148:1345–1350
CAS PubMed Google Scholar
- Stetler-Stevenson WG (1999) Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 103:1237–1241
Article CAS PubMed Google Scholar
- Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, Ferrara N, Symes JF, Isner JM (1994) Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 93:662–670
CAS PubMed Google Scholar
- Tomanek RJ (1990) Response of the coronary vasculature to myocardial hypertrophy. J Am Coll Cardiol 15:528–533
Article CAS PubMed Google Scholar
- Tyagi SC, Kumar SG, Banks J, Fortson W (1995) Co-expression of tissue inhibitor and matrix metalloproteinase in myocardium. J Mol Cell Cardiol 27:2177–2189
Article CAS PubMed Google Scholar
- Unemori EN, Ferrara N, Bauer EA, Amento EP (1992) Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J Cell Physiol 153:557–562
Article CAS PubMed Google Scholar
- Wang J, Keiser JA (1998) Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells. Circ Res 83:832–840
CAS PubMed Google Scholar
- Wu LW, Mayo LD, Dunbar JD, Kessler KM, Baerwald MR, Jaffe EA, Wang D, Warren RS, Donner DB (2000) Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation. J Biol Chem 275:5096–5103
CAS PubMed Google Scholar