Endoplasmic reticulum stress in myotonic dystrophy type 1 muscle (original) (raw)

References

  1. Benders AAGM, Groenen PJTA, Oerlemens FTJJ, Veerkamp JH, Wieringa B (1997) Myotonic dystrophy protein kinase is involved in the modulation of the Ca2+ homeostasis in skeletal muscle cells. J Clin Invest 100:1440–1447
    Article PubMed CAS Google Scholar
  2. Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T, Sohn R, Zemelman B, Snell RG, Rundle SA, Crow S, Davies J, Shelbourne P, Buxton J, Jones C, Juvonen V, Johnson K, Harper PS, Shaw DJ, Housman DE (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68:799–808
    Article PubMed CAS Google Scholar
  3. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by precessing the XBP-1 mRNA. Nature 415:92–96
    Article PubMed CAS Google Scholar
  4. Carpenter S, Karpati G (2001) Pathology of skeletal muscle, 2nd edn. Oxford University Press, New York
    Google Scholar
  5. Charlet-B N, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA (2002) Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 10:45–53
    Article PubMed CAS Google Scholar
  6. Cros D, Harnden P, Pouget J, Pellissier JF, Gastaut JL, Serratrice G (1988) Peripheral neuropathy in myotonic dystrophy: a nerve biopsy study. Ann Neurol 23:470–476
    Article PubMed CAS Google Scholar
  7. Dubowitz V (1985) Muscle biopsy. A practical approach, 2nd edn. Bailliere Tindall, London
    Google Scholar
  8. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181–191
    Article PubMed CAS Google Scholar
  9. Furling D, Marette A, Puymirat J (1999) Insulin-like growth factor I circumvents defective insulin action in human myotonic dystrophy skeletal muscle cells. Endocrinology 140:4244–4250
    Article PubMed CAS Google Scholar
  10. Furuno K, Goodman MN, Goldberg AL (1990) Role of different proteolytic systems in the degradation of muscle proteins during denervation atrophy. J Biol Chem 265:8550–8557
    PubMed CAS Google Scholar
  11. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic reticulum-resisdent kinase. Nature 397:271–274
    Article PubMed CAS Google Scholar
  12. Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell:3787–3799
    Google Scholar
  13. Ho TH, Charlet-B N, Poulos MG, Singh G, Swanson MS, Cooper TA (2004) Muscleblind proteins regulate alternative splicing. EMBO J 23:3103–3112
    Article PubMed CAS Google Scholar
  14. Hoffman EP, Lehmann-Horn F, Rüdel R (1995) Overexcited or inactive: ion channels in muscle disease. Cell 80:681–686
    Article PubMed CAS Google Scholar
  15. Hoozemans JJM, Veerhuis R, Van Haastert ES, Rozemuller JM, Baas F, Eikelenboom P, Scheper W (2005) The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol (Berl) 110:165–172
    Article CAS Google Scholar
  16. Ikezoe K, Furuya H, Ohyagi Y, Osoegawa M, Nishino I, Nonaka I, Kira J (2003) Dysferlin expression in tubular aggregates: their possible relationship to endoplasmic reticulum stress. Acta Neuropathol (Berl) 105:603–609
    CAS Google Scholar
  17. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233
    PubMed CAS Google Scholar
  18. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110:1389–1398
    Article PubMed CAS Google Scholar
  19. Kimura T, Nakamori M, Lueck JD, Pouliquin P, Aoike F, Fujimura H, Dirksen RT, Takahashi MP, Dulhunty AF, Sakoda S (2005) Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum Mol Genet 14:2189–2200
    Article PubMed CAS Google Scholar
  20. Lindholm D, Wootz H, Korhonen L (2006) ER stress and neurodegenerative diseases. Cell Death Differ 13:385–392
    Article PubMed CAS Google Scholar
  21. Lyfenko AD, Goonasekera SA, Dirksen RT (2004) Dynamic alterations in myoplasmic Ca2+ in malignant hyperthermia and central core disease. Biochem Biophys Res Commun 322:1256–1266
    Article PubMed CAS Google Scholar
  22. Maeda M, Taft CS, Bush EW, Holder E, Bailey WM, Neville H, Perryman MB, Bies RD (1995) Identification, tissue-specific expression, and subcellular localization of the 80 and 71 kD forms of myotonic dystrophy kinase protein. J Biol Chem 270:20246–20249
    Article PubMed CAS Google Scholar
  23. Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT, Cannon SC, Thornton CA (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10:35–44
    Article PubMed CAS Google Scholar
  24. Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451–454
    Article PubMed CAS Google Scholar
  25. Nakanishi K, Sudo T, Marishima N (2005) Endoplasmic reticulum stress signaling transmitted by ATF6 mediates apoptosis during muscle development. J Cell Biol 169:555–560
    Article PubMed CAS Google Scholar
  26. Pall GS, Johnson KJ, Smith GL (2003) Abnormal contractile activity and calcium cycling in cardiac myocytes isolated from dmpk knockout mice. Physiol Genomics 13:139–146
    PubMed CAS Google Scholar
  27. Philips AV, Timchenko LT, Cooper TA (1998) Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 280:737–741
    Article PubMed CAS Google Scholar
  28. Rao RV, Hermel E, Castro-Obregon S, del Rio G, Ellerby LM, Ellerby HM, Bredesen DE (2001) Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 276:33869–33874
    Article PubMed CAS Google Scholar
  29. Ron D (2002) Translational control in the endoplasmic reticulum stress response. J Clin Invest 110:1383–1388
    Article PubMed CAS Google Scholar
  30. Salviati G, Pierobon-Bormioli S, Betto R, Damiani E, Angelini C, Ringel SP, Salvatori S, Margreth A (1985) Tubular aggregates: sarcoplasmic reticulum origin, calcium storage ability, and functional implications. Muscle Nerve 8:299–306
    Article PubMed CAS Google Scholar
  31. Sato N, Imaizumi K, Manabe T, Taniguchi M, Hitomi J, Katayama T, Yoneda T, Morihara T, Yasuda Y, Takagi T, Kudo T, Tsuda T, Itoyama Y, Makifuchi T, Fraser PE, George-Hyslop PS, Tohyama M (2001) Increased production of beta-amyloid and vulnerability to endoplasmic reticulum stress by an aberrant spliced form of presenilin 2. J Biol Chem 276:2108–2114
    Article PubMed CAS Google Scholar
  32. Savkur RS, Philips AV, Cooper TA (2001) Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29:40–47
    Article PubMed CAS Google Scholar
  33. Taneja KL, McCurrach M, Schalling M, Housman D, Singer RH (1995) Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J Cell Biol 128:995–1002
    Article PubMed CAS Google Scholar
  34. Tews DS, Behrhof W, Schindler S (2005) Expression patterns of initiator and effector caspases in denervated human skeletal muscle. Muscle Nerve 31:175–181
    Article PubMed CAS Google Scholar
  35. Ueda H, Shimokawa M, Yamamoto M, Kameda N, Mizusawa H, Baba T, Terada N, Fujii Y, Ohno S, Ishiura S, Kobayashi T (1999) Decreased expression of myotonic dystrophy protein kinase and disorganization of sarcoplasmic reticulum in skeletal muscle of myotonic dystrophy. J Neurol Sci 162:38–50
    Article PubMed CAS Google Scholar
  36. Vattemi G, Engel WK, McFerrin J, Askanas V (2004) Endoplasmic reticulum stress and unfolded protein response in inclusion body myositis muscle. Am J Pathol 164:1–7
    PubMed CAS Google Scholar
  37. Vattemi G, Tomelleri G, Filosto M, Savio C, Rizzuto N, Tonin P (2005) Expression of late myogenic differentiation markers in sarcoplasmic masses of patients with myotonic dystrophy. Neuropathol Appl Neurobiol 31:45–52
    Article PubMed CAS Google Scholar
  38. Wang JF, Schröder JM (2000) Comparative morphometric evaluation of peripheral nerves and muscle fibers in myotonic dystrophy. Acta Neuropathol (Berl) 99:39–47
    Article CAS Google Scholar
  39. Wate R, Ito H, Zhang JH, Ohnishi S, Nakano S, Kusaka H (2005) Expression of an endoplasmic reticulum-resident chaperone, glucose-regulated stress protein 78, in the spinal cord of a mouse model of amyotrophic lateral sclerosis. Acta Neuropathol (Berl) 110:557–562
    Article CAS Google Scholar
  40. Wing SS, Haas AL, Goldberg AL (1995) Increase in ubiquitin-protein conjugates concomitant with the increase in proteolysis in rat skeletal muscle during starvation and atrophy denervation. Biochem J 307:639–645
    PubMed CAS Google Scholar
  41. Wu S, Ibarra M CA, Malicdan MCV, Murayama K, Ichihara Y, Kikuchi H, Nonaka I, Noguchi S, Hayashi YK, Nishino I (2006) Central core disease is due to RYR1 mutation in more than 90% of patients. Brain 129:1470–1480
    Article PubMed Google Scholar
  42. Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6:1355–1364
    Article PubMed CAS Google Scholar
  43. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891
    Article PubMed CAS Google Scholar

Download references