Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington’s disease mice (original) (raw)
Albers DS, Beal MF (2000) Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm Suppl 59:131–154 Google Scholar
Arteaga S, Andrade-Cetto A, Cárdenas R (2005) Larrea tridentata (Creosote bush), an abundant plant of Mexican and US-American deserts and its metabolite nordihydroguaiaretic acid. J Ethnopharmacol 98:231–239 ArticlePubMedCAS Google Scholar
Beal MF (1995) Aging, energy and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366 ArticlePubMedCAS Google Scholar
Beal MF, Ferrante RJ (2004) Experimental therapeutics in transgenic mouse models of Huntington’s disease. Nat Rev Neurosci 5:373–384 ArticlePubMedCAS Google Scholar
Bosco DA, Fowler DM, Zhang Q, Nieva J, Powers ET, Wentworth P Jr et al (2006) Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization. Nat Chem Biol 2:249–253 ArticlePubMedCAS Google Scholar
Browne SE, Beal MF (2006) Oxidative damage in Huntington’s disease pathogenesis. Antioxid Redox Signal 8:2061–2073 ArticlePubMedCAS Google Scholar
Comporti M (1998) Lipid peroxidation and biogenic aldehydes: from the identification of 4-hydroxynonenal to further achievements in biopathology. Free Radic Res 28:623–635 ArticlePubMedCAS Google Scholar
Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B et al (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 23:9418–9427 PubMedCAS Google Scholar
Fischbeck KH (2001) Polyglutamine expansion neurodegenerative disease. Brain Res Bull 56:161–163 ArticlePubMedCAS Google Scholar
Fujimoto N, Kohta R, Kitamura S, Honda H (2004) Estrogenic activity of an antioxidant, nor dihydroguaiaretic acid (NDGA). Life Sci 74:1417–1425 ArticlePubMedCAS Google Scholar
Goodman Y, Steiner MR, Steiner SM, Mattson MP (1994) Nordihydroguaiaretic acid protects hippocampal neurons against amyloid beta-peptide toxicity, and attenuates free radical and calcium accumulation. Brain Res 654:171–176 ArticlePubMedCAS Google Scholar
Hall ED, Andrus PK, Oostveen JA, Fleck TJ, Gurney ME (1998) Relationship of oxygen radical-induced lipid peroxidative damage to disease onset and progression in a transgenic model of familial ALS. J Neurosci Res 53:66–77 ArticlePubMedCAS Google Scholar
Hamaguchi T, Ono K, Murase A, Yamada M (2009) Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-beta aggregation pathway. Am J Pathol 175:2557–2565 ArticlePubMedCAS Google Scholar
Hersch SM, Ferrante RJ (1997) Neuropathology and pathophysiology of Huntington’s disease. In: Watts RL, Koller WC (eds) Movement disorders: neurologic principles and practice. McGraw-Hill, New York, pp 503–518
Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983 Article Google Scholar
Lee JM, Ivanova EV, Seong IS, Cashorali T, Kohane I, Gusella JF, MacDonald ME (2007) Unbiased gene expression analysis implicates the huntingtin polyglutamine tract in extra-mitochondrial energy metabolism. PLoS Genet 3:e135 ArticlePubMed Google Scholar
Levine MS, Klapstein GJ, Koppel A, Gruen E, Cepeda C, Vargas ME et al (1999) Enhanced sensitivity to _N_-methyl-d-aspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J Neurosci Res 58:515–532 ArticlePubMedCAS Google Scholar
Li Y, Maher P, Schubert D (1997) A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 19:453–463 ArticlePubMedCAS Google Scholar
Li X, Sapp E, Chase K, Comer-Tierney LA, Masso N, Alexander J, Reeves P, Kegel KB, Valencia A, Esteves M, Aronin N, Difiglia M (2009) Disruption of Rab11 activity in a knock-in mouse model of Huntington’s disease. Neurobiol Dis 36:374–383 ArticlePubMedCAS Google Scholar
Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506 ArticlePubMedCAS Google Scholar
McGrath LT, McGleenon BM, Brennan S, McColl D, McILroy S, Passmore AP (2001) Increased oxidative stress in Alzheimer’s disease as assessed with 4-hydroxynonenal but not malondialdehyde. QJM 94:485–490 ArticlePubMedCAS Google Scholar
Montine TJ, Neely MD, Quinn JF, Beal MF, Markesbery WR, Roberts LJ et al (2002) Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radic Biol Med 33:620–626 ArticlePubMedCAS Google Scholar
Neely MD, Sidell KR, Graham DG, Montine TJ (1999) The lipid peroxidation product 4-hydroxynonenal inhibits neurite outgrowth, disrupts neuronal microtubules, and modifies cellular tubulin. J Neurochem 72:2323–2333 ArticlePubMedCAS Google Scholar
Neely MD, Boutte A, Milatovic D, Montine TJ (2005) Mechanisms of 4-hydroxynonenal-induced neuronal microtubule dysfunction. Brain Res 1037:90–98 ArticlePubMedCAS Google Scholar
Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 23:166–174 ArticlePubMedCAS Google Scholar
Ono K, Hasegawa K, Yoshiike Y, Takashima A, Yamada M, Naiki H (2002) Nordihydroguaiaretic acid potently breaks down pre-formed Alzheimer’s beta-amyloid fibrils in vitro. J Neurochem 81:434–440 ArticlePubMedCAS Google Scholar
Ono K, Yamada M (2006) Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro. J Neurochem 97:105–115 ArticlePubMedCAS Google Scholar
Orr AL, Li S, Wang CE, Li H, Wang J, Rong J, Xu X, Mastroberardino PG, Greenamyre JT, Li XJ (2008) N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J Neurosci 28:2783–2792 ArticlePubMedCAS Google Scholar
Oyamada R, Hayashi M, Katoh Y, Tsuchiya K, Mizutani T, Tominaga I et al (2006) Neurofibrillary tangles and deposition of oxidative products in the brain in cases of myotonic dystrophy. Neuropathology 26:107–114 ArticlePubMed Google Scholar
Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ et al (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 5:731–736 PubMedCAS Google Scholar
Qahwash IM, Boire A, Lanning J, Krausz T, Pytel P, Meredith SC (2007) Site-specific effects of peptide lipidation on beta-amyloid aggregation and cytotoxicity. J Biol Chem 282:36987–36997 ArticlePubMedCAS Google Scholar
Ratan RR, Ryu H, Lee J, Mwidau A, Neve RL (2002) In vitro model of oxidative stress in cortical neurons. Methods Enzymol 352:183–190 ArticlePubMedCAS Google Scholar
Ryu H, Lee J, Olofsson BA, Mwidau A, Dedeoglu A, Escudero M et al (2003) Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an SP1-dependent pathway. Proc Natl Acad Sci USA 100:4281–4286 ArticlePubMedCAS Google Scholar
Ryu H, Lee J, Zaman K, Kubilis J, Ferrante RJ, Ross BD et al (2003) SP1 and SP3 are oxidative stress-inducible, anti-death transcription factors in cortical neurons. J Neurosci 23:3597–3606 PubMedCAS Google Scholar
Ryu H, Ferrante RJ (2005) Emerging chemotherapeutic strategies for Huntington’s disease. Expert Opin Emerg Drugs 10:345–363 ArticlePubMedCAS Google Scholar
Ryu H, Lee J, Hagerty SW, Soh BY, McAlpin SE, Cormier KA et al (2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease. Proc Natl Acad Sci USA 103:19176–19181 ArticlePubMedCAS Google Scholar
Sawa A, Wiegand GW, Cooper J, Margolis RL, Sharp AH, Lawler JF Jr et al (1999) Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat Med 5:1194–1198 ArticlePubMedCAS Google Scholar
Schaur RJ (2003) Basic aspects of the biochemical reactivity of 4-hydroxynonenal. Mol Aspects Med 24:149–159 ArticlePubMedCAS Google Scholar
Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA et al (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 8:397–407 ArticlePubMedCAS Google Scholar
Sexton A, McDonald M, Cayla C, Thiemermann C, Ahluwalia A (2007) 12-Lipoxygenase-derived eicosanoids protect against myocardial ischemia/reperfusion injury via activation of neuronal TRPV1. FASEB J 21:2695–2703 ArticlePubMedCAS Google Scholar
Shishido Y, Furushiro M, Hashimoto S, Yokokura T (2001) Effect of nordihydroguaiaretic acid on behavioral impairment and neuronal cell death after forebrain ischemia. Pharmacol Biochem Behav 69:469–474 ArticlePubMedCAS Google Scholar
Siegel SJ, Bieschke J, Powers ET, Kelly JW (2007) The oxidative stress metabolite 4 hydroxynonenal promotes Alzheimer protofibril formation. Biochemistry 46:1503–1510 ArticlePubMedCAS Google Scholar
Trostchansky A, Lind S, Hodara R, Oe T, Blair IA, Ischiropoulos H et al (2006) Interaction with phospholipids modulates alpha-synuclein nitration and lipid-protein adduct formation. Biochem J 393:343–349 ArticlePubMedCAS Google Scholar
Truant R, Atwal RS, Burtnik A (2007) Nucleocytoplasmic trafficking and transcription effects of huntingtin in Huntington’s disease. Prog Neurobiol 83:211–227 ArticlePubMedCAS Google Scholar
Trushina E, McMurray CT (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145:1233–1248 ArticlePubMedCAS Google Scholar
Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577 ArticlePubMedCAS Google Scholar
Vonsattel JP (2008) Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathol 115:55–69 ArticlePubMed Google Scholar
Zarkovic K (2003) 4-Hydroxynonenal and neurodegenerative diseases. Mol Aspects Med 24:293–303 ArticlePubMedCAS Google Scholar