Flow modulates centriole movements in tubular epithelial cells (original) (raw)

References

  1. Marshall WF, Nonaka S (2006) Cilia: tuning in to the cell’s antenna. Curr Biol 16:R604–R614
    Article PubMed CAS Google Scholar
  2. Davenport JR, Yoder BK (2005) An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am J Physiol Renal Physiol 289:F1159–F1169
    Article PubMed CAS Google Scholar
  3. Kuehn EW, Walz G, Benzing T (2007) Von hippel-lindau: a tumor suppressor links microtubules to ciliogenesis and cancer development. Cancer Res 67:4537–4540
    Article PubMed CAS Google Scholar
  4. Dawe HR, Farr H, Gull K (2007) Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J Cell Sci 120:7–15
    Article PubMed CAS Google Scholar
  5. Bartolini F, Gundersen GG (2006) Generation of noncentrosomal microtubule arrays. J Cell Sci 119:4155–4163
    Article PubMed CAS Google Scholar
  6. Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106:489–498
    Article PubMed CAS Google Scholar
  7. Feldman JL, Geimer S, Marshall WF (2007) The mother centriole plays an instructive role in defining cell geometry. PLoS Biol 5:e149
    Article PubMed CAS Google Scholar
  8. Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK (2007) A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129:1201–1213
    Article PubMed CAS Google Scholar
  9. Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79
    Article PubMed CAS Google Scholar
  10. Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF (2006) Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 131:911–920
    Article PubMed CAS Google Scholar
  11. Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM (2003) Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol 285:F998–F1012
    PubMed CAS Google Scholar
  12. Delmas P (2005) Polycystins: polymodal receptor/ion-channel cellular sensors. Pflugers Arch 451:264–276
    Article PubMed CAS Google Scholar
  13. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137
    Article PubMed CAS Google Scholar
  14. Wang S, Zhang J, Nauli SM, Li X, Starremans PG, Luo Y, Roberts KA, Zhou J (2007) Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia. Mol Cell Biol 27:3241–3252
    Article PubMed CAS Google Scholar
  15. Simons M, Walz G (2006) Polycystic kidney disease: Cell division without a c(l)ue? Kidney Int 70:854–864
    Article PubMed CAS Google Scholar
  16. Fischer E, Legue E, Doyen A, Nato F, Nicolas JF, Torres V, Yaniv M, Pontoglio M (2006) Defective planar cell polarity in polycystic kidney disease. Nat Genet 38:21–23
    Article PubMed CAS Google Scholar
  17. Jones C, Roper VC, Foucher I, Qian D, Banizs B, Petit C, Yoder BK, Chen P (2008) Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat Genet 40:69–77
    Article PubMed CAS Google Scholar
  18. Schermer B, Ghenoiu C, Bartram M, Muller RU, Kotsis F, Hohne M, Kuhn W, Rapka M, Nitschke R, Zentgraf H, Fliegauf M, Omran H, Walz G, Benzing T (2006) The von Hippel-Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth. J Cell Biol 175:547–554
    Article PubMed CAS Google Scholar
  19. Kuehn EW, Hirt MN, John A-K, Muehlenhardt P, Boehlke C, Pütz M, Kramer-Zucker AG, Bashkurov M, van de Weyer PS, Kotsis F, Walz G (2007) Kidney Injury Molecule 1 (Kim1) is a novel ciliary molecule and interactor of polycystin 2. Biochem Biophys Res Commun 364:861–866
    Article PubMed CAS Google Scholar
  20. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90
    Article PubMed CAS Google Scholar
  21. Kotsis F, Nitschke R, Boehlke C, Bashkurov M, Walz G, Kuehn EW (2007) Ciliary calcium signaling is modulated by kidney injury molecule-1 (Kim1). Pflugers Arch 453:819–29
    Article PubMed CAS Google Scholar
  22. Kuehn EW, Park KM, Somlo S, Bonventre JV (2002) Kidney injury molecule-1 expression in murine polycystic kidney disease. Am J Physiol Renal Physiol 283:F1326–F1336
    PubMed CAS Google Scholar
  23. Mimori-Kiyosue Y, Shiina N, Tsukita S (2000) The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr Biol 10:865–868
    Article PubMed CAS Google Scholar
  24. Jung AC, Denholm B, Skaer H, Affolter M (2005) Renal tubule development in Drosophila: a closer look at the cellular level. J Am Soc Nephrol 16:322–328
    Article PubMed CAS Google Scholar
  25. McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73
    Article PubMed CAS Google Scholar
  26. Geng L, Okuhara D, Yu Z, Tian X, Cai Y, Shibazaki S, Somlo S (2006) Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J Cell Sci 119:1383–1395
    Article PubMed CAS Google Scholar
  27. Lin F, Hiesberger T, Cordes K, Sinclair AM, Goldstein LS, Somlo S, Igarashi P (2003) Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci U S A 100:5286–5291
    Article PubMed CAS Google Scholar
  28. Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151:709–718
    Article PubMed CAS Google Scholar
  29. Nonaka S, Yoshiba S, Watanabe D, Ikeuchi S, Goto T, Marshall WF, Hamada H (2005) De novo formation of left-right asymmetry by posterior tilt of nodal cilia. PLoS Biol 3:e268
    Article PubMed CAS Google Scholar
  30. Mitchell B, Jacobs R, Li J, Chien S, Kintner C (2007) A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 447:97–101
    Article PubMed CAS Google Scholar

Download references