Hydrogen peroxide as an endothelium-derived hyperpolarizing factor (original) (raw)
Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS, Schoneich C, Cohen RA (2004) S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10:1200–1207 ArticleCASPubMed Google Scholar
Barlow RS, White RE (1998) Hydrogen peroxide relaxes porcine coronary arteries by stimulating BKCa channel activity. Am J Physiol 275:H1283–H1289 CASPubMed Google Scholar
Barlow RS, El-Mowafy AM, White RE (2000) H2O2 opens BKCa channels via the PLA2-arachidonic acid signaling cascade in coronary artery smooth muscle. Am J Physiol 279:H475–H483 CAS Google Scholar
Beny JL, von der Weid PY (1991) Hydrogen peroxide: an endogenous smooth muscle cell hyperpolarizing factor. Biochem Biophys Res Commun 176:378–384 ArticleCASPubMed Google Scholar
Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368:850–853 ArticleCASPubMed Google Scholar
Bolton TB, Lang RJ, Takewaki T (1984) Mechanisms of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery. J Physiol 351:549–572 CASPubMed Google Scholar
Burke TM, Wolin MS (1987) Hydrogen peroxide elicits pulmonary arterial relaxation and guanylate cyclase activation. Am J Physiol 252:H721–732 CASPubMed Google Scholar
Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH (2002) EDHF: bringing the concepts together. Trends Pharmacol Sci 23:374–380 ArticleCASPubMed Google Scholar
Campbell WB, Gebremedhin D, Pratt PF, Harder DR (1996) Identification of epoxyeocosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res 78:415–423 CASPubMed Google Scholar
Chaytor AT, Edwards DH, Bakker LM, Griffith TM (2003) Distinct hyperpolarizing and relaxant roles for gap junctions and endothelium-derived H2O2 in NO-independent relaxations of rabbit arteries. Proc Natl Acad Sci USA 100:15212–15217 ArticleCASPubMed Google Scholar
Chen G, Suzuki H, Weston AH (1988) Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels. Br J Pharmacol 95:1165–1174 CASPubMed Google Scholar
Didion SP, Ryan MJ, Didion LA, Fegan PE, Sigmund CD, Faraci FM (2002) Increased superoxide and vascular dysfunction in CuZnSOD-deficient mice. Circ Res 91:938–944 ArticleCASPubMed Google Scholar
Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH (1998) K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 396:269–272 ArticleCASPubMed Google Scholar
Ellis A, Triggle CR (2003) Endothelium-derived reactive oxygen species: their relationship to endothelium-dependent hyperpolarization and vascular tone. Can J Physiol Pharmacol 81:1013–1028 ArticleCASPubMed Google Scholar
Faraci FM, Didion SP (2004) Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol 24:1367–1373 ArticleCASPubMed Google Scholar
Feletou M, Vanhoutte PM (1988) Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br J Pharmacol 93:515–524 CASPubMed Google Scholar
Fisslthaler B, Popp R, Kiss L, Potente M, Harder DR, Fleming I, Busse R (1999) Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature 401:493–497 ArticleCASPubMed Google Scholar
Fukai T, Folz RJ, Landmesser U, Harrison DG (2002) Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc Res 55:239–249 ArticleCASPubMed Google Scholar
Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376 ArticleCASPubMed Google Scholar
Griffith TM, Chaytor AT, Taylor HJ, Giddings BD, Edwards DH (2002) cAMP facilitates EDHF-type relaxations in conduit arteries by enhancing electrotonic conduction via gap junctions. Proc Natl Acad Sci USA 99:6392–6397 ArticleCASPubMed Google Scholar
Griffith TM, Chaytor AT, Edwards DH (2004) The obligatory link: role of gap junctional communication in endothelium-dependent smooth muscle hyperpolarization. Pharmacol Res 49:551–564 ArticleCASPubMed Google Scholar
Griffith TM, Chaytor AT, Bakker LM, Edwards DH (2005) 5-Methyltetrahydrofolate and tetrahydrobiopterin can modulate electrotonically mediated endothelium-dependent vascular relaxation. Proc Natl Acad Sci USA 102:7008–7013 ArticleCASPubMed Google Scholar
Gutterman DD, Miura H, Liu Y (2005) Redox modulation of vascular tone. Focus of potassium channel mechanisms of dilation. Arterioscler Thromb Vasc Biol 25:671–678 ArticleCASPubMed Google Scholar
Hatoum OA, Binion DG, Miura H, Telford G, Otterson MF, Gutterman DD (2005) Role of hydrogen peroxide in ACh-induced dilation of human submucosal intestinal microvessels. Am J Physiol 288:H48–54 CAS Google Scholar
Hattori T, Kajikuri J, Katsuya H, Itoh T (2003) Effects of H2O2 on membrane potential of smooth muscle cells in rabbit mesenteric resistance artery. Eur J Pharmacol 464:101–109 ArticleCASPubMed Google Scholar
Iida Y, Katusic ZS (2000) Mechanisms of cerebral arterial relaxations to hydrogen peroxide. Stroke 31:2224–2230 CASPubMed Google Scholar
Inokuchi K, Hirooka Y, Shimokawa H, Sakai K, Kishi T, Ito K, Kimura Y, Takeshita A (2003) Role of endothelium-derived hyperpolarizing factor in human forearm circulation. Hypertension 42:919–924 ArticleCASPubMed Google Scholar
Krishna MC, Grahame DA, Samuni A, Mitchell JB, Russo A (1992) Oxoammonium cation intermediate in the nitroxide-catalyzed dismutation of superoxide. Proc Natl Acad Sci USA 89:5537–5541 ArticleCASPubMed Google Scholar
Kuriyama H, Suzuki H (1978) The effects of acetylcholine on the membrane and contractile properties of smooth muscle cells of the rabbit superior mesenteric artery. Br J Pharmacol 64:493–501 CASPubMed Google Scholar
Lacza Z, Puskar M, Kis B, Perciaccante JV, Miller AW, Busija DW (2002) Hydrogen peroxide acts as an EDHF in the piglet pial vasculature in response to bradykinin. Am J Physiol 283:H406–411 CAS Google Scholar
Ledenev AN, Konstantinov AA, Popova E, Ruuge EK (1986) A simple assay of the superoxide generation rate with Tiron as an EPR-visible radical scavenger. Biochem Int 13:391–396 CASPubMed Google Scholar
Li JM, Shah AM (2004) Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol 287:R1014–R1030 CAS Google Scholar
Liu S, Beckman JS, Ku DD (1994) Peroxynitrite, a product of superoxide and nitric oxide, produces coronary vasorelaxation in dogs. J Pharmacol Exp Ther 268:1114–1121 CASPubMed Google Scholar
Liu Y, Terata K, Chai Q, Li H, Kleinman LH, Gutterman DD (2002) Peroxynitrite inhibits Ca2+-activated K+ channel activity in smooth muscle of human coronary arterioles. Circ Res 91:1070–1076 ArticleCASPubMed Google Scholar
Liu Y, Zhao H, Li H, Kalyanaraman B, Nicolosi AC, Gutterman DD (2003) Mitochondrial sources of H2O2 generation play a key role in flow-mediated dilation in human coronary resistance arteries. Circ Res 93:573–580 ArticleCASPubMed Google Scholar
Lucchesi PA, Belmadani S, Matrougui K (2005) Hydrogen peroxide acts as both vasodilator and vasoconstrictor in the control of perfused mesenteric arteries. J Hypertens 23:571–579 ArticleCASPubMed Google Scholar
Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A (2000) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest 106:1521–1530 ArticleCASPubMed Google Scholar
Matoba T, Shimokawa H, Kubota H, Morikawa K, Fujiki T, Kunihiro I, Mukai Y, Hirakawa Y, Takeshita A (2002) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in human mesenteric arteries. Biochem Biophys Res Commun 290:909–913 ArticleCASPubMed Google Scholar
Matoba T, Shimokawa H, Morikawa K, Kubota H, Kunihiro I, Urakami-Harasawa L, Mukai Y, Hirakawa Y, Akaike T, Takeshita A (2003) Electron spin resonance detection of hydrogen peroxide as an endothelium-derived hyperpolarizing factor in porcine coronary microvessels. Arterioscler Thromb Vasc Biol 23:1224–1230 ArticleCASPubMed Google Scholar
Miura H, Bosnjak JJ, Ning G, Saito T, Miura M, Gutterman DD (2003) Role for hydrogen peroxide in flow-induced dilation of human coronary arterioles. Circ Res 92:e31–e40 ArticleCASPubMed Google Scholar
Morikawa K, Shimokawa H, Matoba T, Kubota H, Akaike T, Talukder MA, Hatanaka M, Fujiki T, Maeda H, Takahashi S, Takeshita A (2003) Pivotal role of Cu, Zn-superoxide dismutase in endothelium-dependent hyperpolarization. J Clin Invest 112:1871–1879 CASPubMed Google Scholar
Morikawa K, Fujiki T, Matoba T, Kubota H, Hatanaka M, Takahashi S, Shimokawa H (2004) Important role of superoxide dismutase in EDHF-mediated responses of human mesenteric arteries. J Cardiovasc Pharmacol 44:552–556 ArticleCASPubMed Google Scholar
Morishita T, Tsutsui M, Shimokawa H, Sabanai K, Tasaki H, Suda O, Nakata S, Tanimoto A, Wang K-Y, Ueta Y, Sasaguri Y, Nakashima Y, Yanagihara N (2005) Nephrogenic diabetes insipidus in mice lacking all nitric oxide synthase isoforms. Proc Nat'l Acad Sci USA 102:10616–10621 ArticleCAS Google Scholar
Mugge A, Elwell JH, Peterson TE, Harrison DG (1991) Release of intact endothelium-derived relaxing factor depends on endothelial superoxide dismutase activity. Am J Physiol 260:C219–C225 CASPubMed Google Scholar
Nagao T, Illiano S, Vanhoutte PM (1992) Calmodulin antagonists inhibit endothelium-dependent hyperpolarization in the canine coronary artery. Br J Pharmacol 107:382–386 CASPubMed Google Scholar
Nakata S, Tsutsui M, Shimokawa H, Morishita T, Sabanai K, Nagasaki M, Tanimoto A, Yatera Y, Tasaki H, Nakamura T, Sasaguri Y, Nakashima Y, Otsuji Y, Yanagihara N (2008) Spontaneous myocardial infarction in mice lacking all nitric oxide synthase isoforms. Circulation 117:2211–2223 ArticleCASPubMed Google Scholar
Okado-Matsumoto A, Fridovich I (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem 276:38388–38393 ArticleCASPubMed Google Scholar
Rubanyi GM, Vanhoutte PM (1986) Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle. Am J Physiol 250:H815–21 CASPubMed Google Scholar
Shimokawa H (2005) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in animals and humans. J Mol Cell Cardiol 39:725–732 ArticleCASPubMed Google Scholar
Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R, Fukumoto Y, Takayanagi T, Nagao T, Egashira K, Fujishima M, Takeshita A (1996) The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol 28:703–711 ArticleCASPubMed Google Scholar
Shimokawa H, Matoba T (2004) Hydrogen peroxide as an endothelium-derived hyperpolarizing factor. Pharmacol Res 49:543–549 ArticleCASPubMed Google Scholar
Sobey CG, Heistad DD, Faraci FM (1997) Mechanisms of bradykinin-induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate K+ channels. Stroke 28:2290–2294 CASPubMed Google Scholar
Stuehr D, Pou S, Rosen GM (2001) Oxygen reduction by nitric-oxide synthases. J Biol Chem 276:14533–14536 ArticleCASPubMed Google Scholar
Takaki A, Morikawa K, Tsutsui M, Murayama Y, Takes E, Yamagishi H, Ohashi J, Yada T, Yanagihara N, Shimokawa H (2008) Crucial role of nitric oxide synthases system in endothelium-dependent hyperpolarization in mice. J Exp Med 205:2053–2063 ArticleCASPubMed Google Scholar
Takamura Y, Shimokawa H, Zhao H, Igarashi H, Egashira K, Takeshita A (1999) Important role of endothelium-derived hyperpolarizing factor in shear stress-induced endothelium-dependent relaxations in the rat mesenteric artery. J Cardiovasc Pharmacol 34:381–387 ArticleCASPubMed Google Scholar
Takano H, Dora KA, Spitaler MM, Garland CJ (2004) Spreading dilatation in rat mesenteric arteries associated with calcium-independent endothelial cell hyperpolarization. J Physiol 556:887–903 ArticleCASPubMed Google Scholar
Thengchaisri N, Kuo L (2003) Hydrogen peroxide induces endothelium-dependent and -independent coronary arteriolar dilation: role of cyclooxygenase and potassium channels. Am J Physiol 285:H2255–H2263 CAS Google Scholar
Urakami-Harasawa L, Shimokawa H, Nakashima M, Egashira K, Takeshita A (1997) Importance of endothelium-derived hyperpolarizing factor in human arteries. J Clin Invest 100:2793–2799 ArticleCASPubMed Google Scholar
Vanhoutte PM (2009) Endothelial dysfunction. The first step toward coronary arteriosclerosis. Circ J 73:595–601 ArticleCASPubMed Google Scholar
Wei EP, Kontos HA, Beckman JS (1996) Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite. Am J Physiol 271:H1262–H1266 CASPubMed Google Scholar
Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Goto M, Ogasawara Y, Kajiya F (2003) Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. Circulation 107:1040–1045 ArticleCASPubMed Google Scholar
Yada T, Shimokawa H, Hiramatsu O, Shinozaki Y, Mori H, Kiyooka T, Goto M, Ogasawara Y, Kajiya F (2006) Cardioprotective role of hydrogen peroxide during ischemia-reperfusion injury in canine coronary microcirculation in vivo. Am J Physiol 291:H1138–1146 CAS Google Scholar
Yada T, Shimokawa H, Hiramatsu O, Shinozaki Y, Mori H, Goto M, Ogasawara Y, Kajiya F (2007) Important role of hydrogen peroxide in pacing-induced metabolic coronary vasodilatation in dogs in vivo. J Am Coll Cardiol 50:1271–1278 Article Google Scholar