Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57:289–300. doi:10.1161/hc4001.097183 Google Scholar
Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, Dimmeler S (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324:1710–1713. doi:10.1126/science.1174381 ArticlePubMedCAS Google Scholar
Bostjancic E, Zidar N, Stajer D, Glavac D (2009) MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology 115:163–169. doi:10.1159/000268088 ArticlePubMed Google Scholar
Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall TJ, Delphin ES, Zhang C (2009) MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem 284:29514–29525. doi:10.1074/jbc.M109.027896 ArticlePubMedCASPubMed Central Google Scholar
Heusch G, Musiolik J, Gedik N, Skyschally A (2011) Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res 109:1302–1308. doi:10.1161/CIRCRESAHA.111.255604 ArticlePubMedCAS Google Scholar
Heusch G, Schulz R (2009) Neglect of the coronary circulation: some critical remarks on problems in the translation of cardioprotection. Cardiovasc Res 84:11–14. doi:10.1093/cvr/cvp210 ArticlePubMedCAS Google Scholar
Hinkel R, Penzkofer D, Zuhlke S, Fischer A, Husada W, Xu QF, Baloch E, van Rooij E, Zeiher AM, Kupatt C, Dimmeler S (2013) Inhibition of microRNA-92a protects against ischemia-reperfusion injury in a large animal model. Circulation 128:1066–1075. doi:10.1161/CIRCULATIONAHA.113.00190 ArticlePubMedCAS Google Scholar
Kowallik P, Schulz R, Guth BD, Schade A, Paffhausen W, Gross R, Heusch G (1991) Measurement of regional myocardial blood flow with multiple colored microspheres. Circulation 83:974–982. doi:10.1161/01.CIR.83.3974 ArticlePubMedCAS Google Scholar
Li C, Browder W, Kao RL (1999) Early activation of transcription factor NF-kappaB during ischemia in perfused rat heart. Am J Physiol 276:H543–H552 PubMedCAS Google Scholar
Li G, Labruto F, Sirsjo A, Chen F, Vaage J, Valen G (2004) Myocardial protection by remote preconditioning: the role of nuclear factor kappa-B p105 and inducible nitric oxide synthase. Eur J Cardiothorac Surg 26:968–973. doi:10.1016/j.ejcts.2004.06.015 ArticlePubMed Google Scholar
Li J, Coven DL, Miller EJ, Hu X, Young ME, Carling D, Sinusas AJ, Young LH (2006) Activation of AMPK alpha- and gamma-isoform complexes in the intact ischemic rat heart. Am J Physiol Heart Circ Physiol 291:H1927–H1934. doi:10.1152/ajpheart.00251.2006 ArticlePubMedCAS Google Scholar
Martinez-Gonzalez J, Rius J, Castello A, Cases-Langhoff C, Badimon L (2003) Neuron-derived orphan receptor-1 (NOR-1) modulates vascular smooth muscle cell proliferation. Circ Res 92:96–103. doi:10.1161/01.RES.0000050921.53008.47 ArticlePubMedCAS Google Scholar
Morgan EN, Boyle EM Jr, Yun W, Griscavage-Ennis JM, Farr AL, Canty TG Jr, Pohlman TH, Verrier ED (1999) An essential role of NF-kappaB in the cardioadaptive response to ischemia. Ann Thorac Surg 68:377–382. doi:10.1016/S0003-4975(99)00646-3 ArticlePubMedCAS Google Scholar
Musi N, Hirshman MF, Arad M, Xing Y, Fujii N, Pomerleau J, Ahmad F, Berul CI, Seidman JG, Tian R, Goodyear LJ (2005) Functional role of AMP-activated protein kinase in the heart during exercise. FEBS Lett 579:2045–2050. doi:10.1016/j.febslet.2005.02.052 ArticlePubMedCAS Google Scholar
Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R (2010) Postconditioning and protection from reperfusion injury: where do we stand? Cardiovasc Res 87:406–423. doi:10.1093/cvr/cvq129 ArticlePubMedCAS Google Scholar
Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ, Sen CK (2009) MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 82:21–29. doi:10.1093/cvr/cvp015 ArticlePubMedCASPubMed Central Google Scholar
Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386 PubMedCAS Google Scholar
Russell RR III, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, Giordano FJ, Mu J, Birnbaum MJ, Young LH (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 114:495–503. doi:10.1172/JCI21233 ArticlePubMedCASPubMed Central Google Scholar
Shan ZX, Lin QX, Fu YH, Deng CY, Zhou ZL, Zhu JN, Liu XY, Zhang YY, Li Y, Lin SG, Yu XY (2009) Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochem Biophys Res Commun 381:597–601. doi:10.1016/j.bbrc.2009.02.097 ArticlePubMedCAS Google Scholar
Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18. doi:10.1161/CIRCRESAHA.108.186429 ArticlePubMedCAS Google Scholar
Skyschally A, van Caster P, Iliodromitis EK, Schulz R, Kremastinos DT, Heusch G (2009) Ischemic postconditioning—experimental models and protocol algorithms. Basic Res Cardiol 104:469–483. doi:10.1007/s00395-009-0040-4 ArticlePubMed Google Scholar
Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I, Aupetit J-F, Bonnefoy E, Finet G, Andre-Fouet X, Ovize M (2005) Postconditioning the human heart. Circulation 112:2143–2148. doi:10.1161/CIRCULATIONAHA.105.558122 ArticlePubMed Google Scholar
Tian R, Musi N, D’Agostino J, Hirshman MF, Goodyear LJ (2001) Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy. Circulation 104:1664–1669. doi:10.1161/hc4001.097183 ArticlePubMedCAS Google Scholar
van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 105:13027–13032. doi:10.1073/pnas.0805038105 ArticlePubMedPubMed Central Google Scholar
Wang JX, Jiao JQ, Li Q, Long B, Wang K, Liu JP, Li YR, Li PF (2011) miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17:71–78. doi:10.1038/nm.2282 ArticlePubMed Google Scholar
Weiss JB, Eisenhardt SU, Stark GB, Bode C, Moser M, Grundmann S (2012) MicroRNAs in ischemia-reperfusion injury. Am J Cardiovasc Dis 2:237–247 PubMedCASPubMed Central Google Scholar
Welman E, Colbeck JF, Selwyn AP, Fox KM, Orr I (1980) Plasma lysosomal enzyme activity in acute myocardial infarction and the effects of drugs. Adv Myocardiol 2:359–369 PubMedCAS Google Scholar
Welman E, Selwyn AP, Peters TJ, Colbeck JF, Fox KM (1978) Plasma lysosomal enzyme activity in acute myocardial infarction. Cardiovasc Res 12:99–105 ArticlePubMedCAS Google Scholar
Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, Xiao J, Shan H, Wang Z, Yang B (2007) The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 120:3045–3052. doi:10.1242/jcs.098830 ArticlePubMedCAS Google Scholar
Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR (2010) Downregulation of microRNA-29 by antisense inhibitors and a PPAR-g agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc Res 87:535–544. doi:10.1093/cvr/cvq053 ArticlePubMedCAS Google Scholar