Reversible inhibition of I K, I AHP, I h and I Ca currents by internally applied gluconate in rat hippocampal pyramidal neurones (original) (raw)
Abstract
Previously, we reported that the spike frequency adaptation and slow afterhyperpolarizations (sAHP) in hippocampal pyramidal neurones are best preserved during whole-cell recording with a methylsulfate (MeSO4 –)- based internal solution, but undergo a fast rundown when gluconate- (Gluc–)- based internal solution is used. Here we show, with internal perfusion of patch pipettes, the reversibility of the inhibitory effects of Gluc–on spike frequency adaptation and sAHP, and extend these observations to fast and medium-duration AHPs. Contrary to what might be expected based on Gluc–binding of Ca2+, the sAHP and its underlying current could be temporarily enhanced by adding 1–3 mM of the calcium chelator BAPTA to the internal solution in the presence of Gluc–. Replacement of internal MeSO4 –with Gluc–did not affect the membrane resting potential or the amplitude and duration of action potentials, but reversibly increased the cell input resistance and decreased the threshold current for spike generation. Gluc–reversibly inhibited the hyperpolarization-activated non-selective cationic current (I h), the depolarization-activated delayed rectifier K+ current (I K), the high-voltage-activated Ca2+ current and the Ca2+-activated K+ current that underlies the sAHP. The combination of these effects of Gluc–significantly alters the electrophysiological ”fingerprint” of the neurone.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
Author information
Authors and Affiliations
- Playfair Neuroscience Unit, Room 12–413, Toronto Hospital Research Institute, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada, , , , , , CA
A. A. Velumian, L. Zhang & P. L. Carlen - Faculty of Pharmacy and MRC Group ”Nerve Cells and Synapses”, University of Toronto, 19 Russell St., Toronto, Ontario M5S 1A1, Canada, , , , , , CA
P. Pennefather
Authors
- A. A. Velumian
You can also search for this author inPubMed Google Scholar - L. Zhang
You can also search for this author inPubMed Google Scholar - P. Pennefather
You can also search for this author inPubMed Google Scholar - P. L. Carlen
You can also search for this author inPubMed Google Scholar
Additional information
Received: 19 April 1996 / Received after revision: 12 July 1996 / Accepted: 3 September 1996
Rights and permissions
About this article
Cite this article
Velumian, A., Zhang, L., Pennefather, P. et al. Reversible inhibition of I K, I AHP, I h and I Ca currents by internally applied gluconate in rat hippocampal pyramidal neurones.Pfluegers Arch 433, 343–350 (1996). https://doi.org/10.1007/s004240050286
- Issue Date: December 1996
- DOI: https://doi.org/10.1007/s004240050286