Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae (original) (raw)
Ahuatzi D, Herrero P, de la Cera T, Moreno F (2004) The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent. J Biol Chem 279:14440–14446 ArticlePubMedCAS Google Scholar
Begley TP (1996) The biosynthesis and degradation of thiamin (vitamin B1). Nat Prod Rep 13:177–185 ArticlePubMedCAS Google Scholar
Burrows RJ, Byrne KL, Meacock PA (2000) Isolation and characterization of Saccharomyces cerevisiae mutants with derepressed thiamine gene expression. Yeast 16:1497–1508 ArticlePubMedCAS Google Scholar
Candy JM, Duggleby RG (1998) Structure and properties of pyruvate decarboxylase and site-directed mutagenesis of the Zymomonas mobilis enzyme. Biochim Biophys Acta 1385:323–338 PubMedCAS Google Scholar
Dickinson JR, Lanterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ, Hewlins MJ (1997) A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 272:26871–26878 ArticlePubMedCAS Google Scholar
Eberhardt I, Cederberg H, Li H, Konig S, Jordan F, Hohmann S (1999) Autoregulation of yeast pyruvate decarboxylase gene expression requires the enzyme but not its catalytic activity. Eur J Biochem 262:191–201 ArticlePubMedCAS Google Scholar
Enjo F, Nosaka K, Ogata M, Iwashima A, Nishimura H (1997) Isolation and characterization of a thiamin transport gene, THI10, from Saccharomyces cerevisiae. J Biol Chem 272:19165–19170 ArticlePubMedCAS Google Scholar
Fauchon M, Lagniel G, Aude JC, Lombardia L, Soularue P, Petat C, Marguerie G, Sentenac A, Werner M, Labarre J (2002) Sulfur sparing in the yeast proteome in response to sulfur demand. Mol Cell 9:713–723 ArticlePubMedCAS Google Scholar
Flikweert MT, Kuyper M, van Maris AJ, Kotter P, van Dijken JP, Pronk JT (1999) Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity. Biotechnol Bioeng 66:42–50 ArticlePubMedCAS Google Scholar
Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361 PubMedCAS Google Scholar
Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534 ArticlePubMedCAS Google Scholar
Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23 ArticlePubMedCAS Google Scholar
Hall DA, Zhu H, Zhu X, Royce T, Gerstein M, Snyder M (2004) Regulation of gene expression by a metabolic enzyme. Science 306:482–484 ArticlePubMedCAS Google Scholar
Hohmann S (1991a) Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Bacteriol 173:7963–7969 CAS Google Scholar
Hohmann S (1991b) PDC6, a weakly expressed pyruvate decarboxylase gene from yeast, is activated when fused spontaneously under the control of the PDC1 promoter. Curr Genet 20:373–378 ArticleCAS Google Scholar
Hohmann S (1993) Characterisation of PDC2, a gene necessary for high level expression of pyruvate decarboxylase structural genes in Saccharomyces cerevisiae. Mol Gen Genet 241:657–666 ArticlePubMedCAS Google Scholar
Hohmann S, Cederberg H (1990) Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem 188:615–621 ArticlePubMedCAS Google Scholar
Hohmann S, Meacock PA (1998) Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation. Biochim Biophys Acta 1385:201–219 PubMedCAS Google Scholar
Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691 ArticlePubMedCAS Google Scholar
Kaiser B, Munder T, Saluz HP, Kunkel W, Eck R (1999) Identification of a gene encoding the pyruvate decarboxylase gene regulator CaPdc2p from Candida albicans. Yeast 15:585–591 ArticlePubMedCAS Google Scholar
Kawasaki Y, Onozuka M, Mizote T, Nosaka K (2005) Biosynthesis of hydroxymethylpyrimidine pyrophosphate in Saccharomyces cerevisiae. Curr Genet 47:156–162 ArticlePubMedCAS Google Scholar
Llorente B, Dujon B (2000) Transcriptional regulation of the Saccharomyces cerevisiaeDAL5 gene family and identification of the high affinity nicotinic acid permease TNA1 (YGR260w). FEBS Lett 475:237–241 ArticlePubMedCAS Google Scholar
Llorente B, Fairhead C, Dujon B (1999) Genetic redundancy and gene fusion in the genome of the Baker’s yeast Saccharomyces cerevisiae: functional characterization of a three-member gene family involved in the thiamine biosynthetic pathway. Mol Microbiol 32:1140–1152 ArticlePubMedCAS Google Scholar
Lu YM, Lin YR, Tsai A, Hsao YS, Li CC, Cheng MY (2003) Dissecting the pet18 mutation in Saccharomyces cerevisiae: HTL1 encodes a 7-kDa polypeptide that interacts with components of the RSC complex. Mol Genet Genomics 269:321–330 ArticlePubMedCAS Google Scholar
Marobbio CM, Vozza A, Harding M, Bisaccia F, Palmieri F, Walker JE (2002) Identification and reconstitution of the yeast mitochondrial transporter for thiamine pyrophosphate. EMBO J 21:5653–5661 ArticlePubMedCAS Google Scholar
Muller EH, Richards EJ, Norbeck J, Byrne KL, Karlsson KA, Pretorius GH, Meacock PA, Blomberg A, Hohmann S (1999) Thiamine repression and pyruvate decarboxylase autoregulation independently control the expression of the Saccharomyces cerevisiaePDC5 gene. FEBS Lett 449:245–250 ArticlePubMedCAS Google Scholar
Mumberg D, Muller R, Funk M (1994) Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res 22:5767–5768 ArticlePubMedCAS Google Scholar
Nishimura H, Kawasaki Y, Nosaka K, Kaneko Y, Iwashima A (1991) A constitutive thiamine metabolism mutation, thi80, causing reduced thiamine pyrophosphokinase activity in Saccharomyces cerevisiae. J Bacteriol 173:2716–2719 PubMedCAS Google Scholar
Nishimura H, Kawasaki Y, Kaneko Y, Nosaka K, Iwashima A (1992a) Cloning and characteristics of a positive regulatory gene, THI2 (PHO6), of thiamin biosynthesis in Saccharomyces cerevisiae. FEBS Lett 297:155–158 ArticleCAS Google Scholar
Nishimura H, Kawasaki Y, Kaneko Y, Nosaka K, Iwashima A (1992b) A positive regulatory gene, THI3, is required for thiamine metabolism in Saccharomyces cerevisiae. J Bacteriol 174:4701–4706 CAS Google Scholar
Nosaka K, Nishimura H, Iwashima A (1989) Identity of soluble thiamine-binding protein with thiamine repressible acid phosphatase in Saccharomyces cerevisiae. Yeast 5(Spec No):S447–S451 Google Scholar
Nosaka K, Kaneko Y, Nishimura H, Iwashima A (1993) Isolation and characterization of a thiamin pyrophosphokinase gene, THI80, from Saccharomyces cerevisiae. J Biol Chem 268:17440–17447 PubMedCAS Google Scholar
Nosaka K, Nishimura H, Kawasaki Y, Tsujihara T, Iwashima A (1994) Isolation and characterization of the THI6 gene encoding a bifunctional thiamin-phosphate pyrophosphorylase/hydroxyethylthiazole kinase from Saccharomyces cerevisiae. J Biol Chem 269:30510–30516 PubMedCAS Google Scholar
Nosaka K, Onozuka M, Konno H, Kawasaki Y, Nishimura H, Sano M, Akaji K (2005) Genetic regulation mediated by thiamin pyrophosphate-binding motif in Saccharomyces cerevisiae. Mol Microbiol 58:467–479 ArticlePubMedCAS Google Scholar
Praekelt UM, Byrne KL, Meacock PA (1994) Regulation of THI4 (MOL1), a thiamine-biosynthetic gene of Saccharomyces cerevisiae. Yeast 10:481–490 ArticlePubMedCAS Google Scholar
Prior C, Tizzani L, Fukuhara H, Wesolowski-Louvel M (1996) RAG3 gene and transcriptional regulation of the pyruvate decarboxylase gene in Kluyveromyces lactis. Mol Microbiol 20:765–772 ArticlePubMedCAS Google Scholar
Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275:8290–8300 ArticlePubMedCAS Google Scholar
Rodriguez-Navarro S, Llorente B, Rodriguez-Manzaneque MT, Ramne A, Uber G, Marchesan D, Dujon B, Herrero E, Sunnerhagen P, Perez-Ortin JE (2002) Functional analysis of yeast gene families involved in metabolism of vitamins B1 and B6. Yeast 19:1261–1276 ArticlePubMedCAS Google Scholar
Schmitt HD, Zimmermann FK (1982) Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis. J Bacteriol 151:1146–1152 PubMedCAS Google Scholar
Schmitt HD, Ciriacy M, Zimmermann FK (1983) The synthesis of yeast pyruvate decarboxylase is regulated by large variations in the messenger RNA level. Mol Gen Genet 192:247–252 ArticlePubMedCAS Google Scholar
Singleton CK (1997) Identification and characterization of the thiamine transporter gene of Saccharomyces cerevisiae. Gene 199:111–121 ArticlePubMedCAS Google Scholar
Tizzani L, Meacock P, Frontali L, Wesolowski-Louvel M (1998) The RAG3 gene of Kluyveromyces lactis is involved in the transcriptional regulation of genes coding for enzymes implicated in pyruvate utilization and genes of the biosynthesis of thiamine pyrophosphate. FEMS Microbiol Lett 168:25–30 ArticlePubMedCAS Google Scholar
Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368 ArticlePubMedCAS Google Scholar
White RL, Spenser ID (1979) Thiamin biosynthesis in Saccharomyces cerevisiae. Origin of carbon-2 of the thiazole moiety. Biochem J 179:315–325 PubMedCAS Google Scholar
Wightman R, Meacock PA (2003) The THI5 gene family of Saccharomyces cerevisiae: distribution of homologues among the hemiascomycetes and functional redundancy in the aerobic biosynthesis of thiamin from pyridoxine. Microbiology 149:1447–1460 ArticlePubMedCAS Google Scholar
Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M’Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906 ArticlePubMedCAS Google Scholar