Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture (original) (raw)
Aggeler J, Takemura R, Werb Z (1983) High-resolution three-dimensional views of membrane-associated clathrin and cytoskeleton in critical-point-dried macrophages. J Cell Biol 97:1452–1458 ArticlePubMedCAS Google Scholar
Akisaka T, Miyaji T, Yoshida H, Inoue M (1997) Ultrastructure of quick-frozen and freeze-substituted chick osteoclasts. J Anat 190:433–445 ArticlePubMed Google Scholar
Akisaka T, Yoshida H, Inoue S, Shimizu K (2001) Organization of cytoskeletal F-actin, G-actin, and gelsolin in the adhesion structures in cultured osteoclast. J Bone Miner Res 16:1248–1255 ArticlePubMedCAS Google Scholar
Akisaka T, Yoshida H, Suzuki R, Shimizu K, Takama K (2003) Clathrin sheets on the protoplasmic surface of ventral membranes of osteoclasts in culture. J Electron Microsc 52:535–543 ArticleCAS Google Scholar
Akisaka T, Yoshida H, Suzuki R (2006) The ruffled border and attachment regions of the apposing membrane of resorbing osteoclasts as visualized from the cytoplasmic face of the membrane. J Electron Microsc 55:53–61 ArticleCAS Google Scholar
Aubin JE (1992) Osteoclast adhesion and resorption: the role of podosomes. J Bone Miner Res 7:365–368 PubMedCAS Google Scholar
Avnur Z, Geiger B (1981) Substrate-attached membranes of cultured cells: isolation and characterization of ventral cell membranes and the associated cytoskeleton. J Mol Biol 153:361–379 ArticlePubMedCAS Google Scholar
Babb SG, Matsudaira P, Sato M, Correia I, Lim SS (1997) Fimbrin in podosomes of monocyte-derived osteoclasts. Cell Motil Cytoskelet 37:308–325 ArticleCAS Google Scholar
Buccione R, Orth JD, McNiven MA (2004) Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol 5:647–657 ArticlePubMedCAS Google Scholar
Burns S, Thrasher AJ, Blundell TM, Machesky L, Jones GE (2001) Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation. Blood 98:1142–1149 ArticlePubMedCAS Google Scholar
Cooper JA (1991) The role of actin polymerization in cell motility. Annu Rev Physiol 53:585–605 ArticlePubMedCAS Google Scholar
Correia I, Chu D, Chou Y-H, Goldman RD, Matsudaira P (1999) Integrating the actin and vimentin cytoskeletons: adhesion-dependent formation of fimbrin-vimentin complexes in macrophages. J Cell Biol 146:831–842 ArticlePubMedCAS Google Scholar
David-Pfeuty T, Singer SJ (1980)Altered distributions of the cytoskeletal proteins vinculin and alpha-actinin in cultured fibroblasts transformed by Rous sarcoma virus. Proc Natl Acad Sci USA 77:6687–6691 ArticlePubMedCAS Google Scholar
Destaing O, Saltel F, Geminard J-C, Jurdic P, Bard F (2003) Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 14:407–416 ArticlePubMedCAS Google Scholar
Destaing O, Saltel F, Gilquin B, Chabadel A, Khochbin S, Ory S, Jurdic P (2005) A novel Rho-mDia2-HDAC6 pathway controls podosome patterning through microtubule acetylation in osteoclasts. J Cell Sci 118:2901–2911 ArticlePubMedCAS Google Scholar
Evans JG, Matsudaira P (2006) Structure and dynamics of macrophage podosomes. Eur J Cell Biol 85:145–149 ArticlePubMedCAS Google Scholar
Evans JG, Correia I, Krasavina O, Watson N, Matsudaira P (2003) Macrophage podosomes assemble at the leading lamella by growth and fragmentation. J Cell Biol 161:697–705 ArticlePubMedCAS Google Scholar
Felice GR, Eason P, Nermut MV, Kellie S (1990) pp60v-src association with the cytoskeleton induces actin reorganization without affecting polymerization status. Eur J Cell Biol 52:47–59 PubMedCAS Google Scholar
Gavazzi I, Nermut MV, Marchisio PC (1989) Ultrastructure and gold-immunolabelling of cell-substratum adhesions (podosomes) in RSV-transformed BHK cells. J Cell Sci 94:85–99 PubMed Google Scholar
Goode BL, Drubin DG, Barness G (2000) Functional cooperation between the microtubule and actin cytoskeletons. Curr Opin Cell Biol 12:63–71 ArticlePubMedCAS Google Scholar
Heuser JE, Anderson RGW (1989) Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J Cell Biol 108:389–400 ArticlePubMedCAS Google Scholar
Heuser JE, Cooke R (1983) Actin-myosin interactions visualized by the quick-freeze, deep-etch replica technique. J Mol Biol 169:97–122 ArticlePubMedCAS Google Scholar
Jurdic P, Saltel F, Chabadel A, Destaing O (2006) Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol 85:195–202 ArticlePubMedCAS Google Scholar
Kaverina I, Krylyshkina O, Small JV (1999) Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J Cell Biol 146:1033–1044 ArticlePubMedCAS Google Scholar
Kaverina I, Krylyshkina O, Small JV (2002) Regulation of substrate adhesion dynamics during cell motility. Int J Biochem Cell Biol 34:746–761 ArticlePubMedCAS Google Scholar
Kaverina I, Stradal TEB, Gimona M (2003) Podosome formation in cultures A7r5 vascular smooth muscle cells requires Arp2/3-dependent de-novo actin polymerization at discrete microdomains. J Cell Biol 116:4915–4924 CAS Google Scholar
Keating TJ, Peloquin JG, Rodionov VI, Momcilovic D, Borisy GG (1997) Microtubule release from the centrosome. Proc Natl Acad Sci USA 94:5078–5083 ArticlePubMedCAS Google Scholar
Lakkakorpi P, Tuukkanen J, Hentunen T, Jarvelin K, Vaananen HK (1989) Organization of osteoclast microfilaments during the attachment to bone surface in vitro. J Bone Miner Res 4:817–825 ArticlePubMedCAS Google Scholar
Lakkakorpi PT, Helfrich MH, Horton MA, Vaananen HK (1993) Spatial organization of microfilaments and vitronectin receptor, alpha v beta 3, in osteoclasts. J Cell Sci 104:663–670 PubMedCAS Google Scholar
Larkin JM, Donzell WC, Anderson RGW (1986) Potassium-dependent assembly of coated pits: new coated pits form as planar clathrin lattices. J Cell Biol 103:2619–2627 ArticlePubMedCAS Google Scholar
Lewis AK, Bridgman PC (1992) Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and porality. J Cell Biol 119:1219–1243 ArticlePubMedCAS Google Scholar
Linder S, Aepfelbacher M (2003) Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol 13:376–385 ArticlePubMedCAS Google Scholar
Linder S, Higgs H, Hufner K, Schwarz K, Pannicke U, Aepfelbacher M (2000a) The polarization defect of Wiskott-Aldrich syndrome macrophages is linked to dislocalization of the Arp2/3 complex. J Immunol 165:221–225 PubMedCAS Google Scholar
Linder S, Hufner K, Wintergerst U, Apefelbacher M (2000b) Microtubule-dependent formation of podosomal adhesion structures in primary human macrophages. J Cell Sci 113:4165–4176 PubMedCAS Google Scholar
Luther PW, Samuelsson SJ, Bloch RJ, Pumplin DW (1996) Ctoskeleton-membrane interactions at the postsynaptic density of Xenopus neuromuscular junctions. J Neurocytol 25:417–427 PubMedCAS Google Scholar
Luxenburg C, Addadi L, Geiger B (2006) The molecular dynamics of osteoclast adhesions. Eur J Cell Biol 85:203–211 ArticlePubMedCAS Google Scholar
Luxenburg C, Geblinger D, Klein E, Anderson K, Hanein D, Geiger B, Addadi L (2007) The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly. PLos One 2:e179 ArticlePubMedCAS Google Scholar
Mahaffey DT, Moore MS, Brodsky FM, Anderson RGW (1989) Coat proteins isolated from clathrin coated vesicles can assemble into coated pits. J Cell Biol 108:1615–1624 ArticlePubMedCAS Google Scholar
Marchisio PC, Cirillo D, Naldini L, Primavera MV, Teti A, Zambonin-Zallone A (1984) Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol 99:1696–1705 ArticlePubMedCAS Google Scholar
Maupin P, Pollard TD (1983) Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J Cell Biol 96:51–62 ArticlePubMedCAS Google Scholar
Moore MS, Mahaffey DT, Brodsky FM, Anderson RGW (1987) Assembly of clathrin-coated pits onto purified plasma membranes. Science 236:558–563 ArticlePubMedCAS Google Scholar
Nermut MV (1989) Strategy and tactics in electron microscopy of cell surfaces. Electron Microsc Rev 2:171–196 ArticlePubMedCAS Google Scholar
Nermut MV, Eason P, Hirst EMA, Kellie S (1991) Cell/substratum adhesions in RSV-transformed rat fibroblasts. Exp Cell Res 193:382–397 ArticlePubMedCAS Google Scholar
Nicol A, Nermut MV (1987) A new type of substratum adhesion structure in NRK cells revealed by correlated interference reflection and electron microscopy. Eur J Cell Biol 43:348–357 PubMedCAS Google Scholar
Nitsch L, Gionti E, Cancedda R, Marchisio PC (1989) The podosomes of Rous sarcoma virus transformed chondrocytes show a peculiar ultrastructural organization. Cell Biol Int Rep 13:919–926 ArticlePubMedCAS Google Scholar
Ochoa GC, Slepnev VI, Neff L, Ringstad N, Takei K, Daniell L, Kim W, Cao H, McNiven M, Baron R, De Camilli P (2000)A functional link between dynamin and the actin cytoskeleton at podosomes.J Cell Biol 150:377–389 ArticlePubMedCAS Google Scholar
Pumplin DW (1989) Acetylcholine receptor clusters of rat myotubes have at least three domains with distinctive cytoskeletal and membranous components. J Cell Biol 109:739–753 ArticlePubMedCAS Google Scholar
Pumplin DW, Bloch RJ (1990) Clathrin-coated membrane: a distinct membrane domain in acetylcholine receptor clusters of rat myotubes. Cell Motil Cytoskelet 15:121–134 ArticleCAS Google Scholar
Robertson TA, Papadimitriou JM (1986) A morphometric study of coated pit formation on the subplasmalemmal surface of murine peritoneal macrophages after adhesion to glass. J Ultrastruct Mol Struct Res 96:125–135 ArticlePubMedCAS Google Scholar
Saltel F, Destaing O, Bard F, Eichert D, Jurdic P (2004) Apatite-mediated actin dynamics in resorbing osteoclasts. Mol Biol Cell 15:5231–5241 ArticlePubMedCAS Google Scholar
Samuelsson SJ, Luther PW, Pumplin DW, Bloch RJ (1993) Structures linking microfilament bundles to the membrane at focal contacts. J Cell Biol 122:485–496 ArticlePubMedCAS Google Scholar
Samuelsson SJ, Luther PW, Bloch RJ (1996) Microfilament-membrane interactions in Xenopus myocytes. Cell Motil Cytoskelet 35:68–80 ArticleCAS Google Scholar
Spinardi L, Marchisio PC (2006) Podosomes as smart regulators of cellular adhesion. Eur J Cell Biol 85:191–194 ArticlePubMedCAS Google Scholar
Svitkina TM, Verkhovsky AB, McQuade KM, Borisy GG (1997) Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J Cell Biol 139:397–415 ArticlePubMedCAS Google Scholar
Takemura R, Stenberg PE, Bainton DF, Werb Z (1986) Rapid redistribution of clathrin onto macrophage plasma membranes in response to Fc receptor-ligand interaction during frustrated phagocytosis. J Cell Biol 102:55–69 ArticlePubMedCAS Google Scholar
Tarone G, Cirillo D, Giancotti FG, Comoglio PM, Marchisio PC (1985) Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Exp Cell Res 159:141–157 ArticlePubMedCAS Google Scholar
Teti A, Marchisio PC, Zambonin-Zallone A (1991) Clear zone in osteoclast function: role of podosomes in regulation of bone-resorbing activity. Am J Physiol 261:C1–C7 PubMedCAS Google Scholar
Turksen K, Kanehisa J, Opas M, Heersche JNM, Aubin JE (1988) Adhesion patterns and cytoskeleton of rabbit osteoclasts on bone slices and glass. J Bone Miner Res 3:389–400 PubMedCAS Google Scholar
Vaananen HK, Horton M (1995) The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure. J Cell Sci 108:2729–2732 PubMedCAS Google Scholar
Verhovsky AB, Svitkina TM, Borisy GG (1997) Polarity sorting of actin filaments in cytochalasin-treated fibroblasts. J Cell Sci 110:1693–1704 Google Scholar
Vorobjev IA, Svitkina TM, Borisy GG (1997) Cytoplasmic assembly of microtubules in cultured cells. J Cell Sci 110:2635–2645 PubMedCAS Google Scholar
Woods A, Smith CG, Rees DA, Wilson G (1983)Stages in specialization of fibroblast adhesion and deposition of extracellular matrix.Eur J Cell Biol 32:108–116 PubMedCAS Google Scholar
Zambonin-Zallone A, Teti A, Grano M, Rubinacci A, Abbadini M, Gaboli M, Marchisio PC (1989) Immunocytochemical distribution of extracellular matrix receptors in human osteoclasts: a beta 3 integrin is colocalized with vinculin and talin in the podosomes of osteoclastoma giant cells. Exp Cell Res 182:645–652 ArticlePubMedCAS Google Scholar