Abdollah S, Macías-Silva M, Tsukazaki T, Hayashi H, Attisano L, Wrana JL (1997) TβRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem 272:27678–27685 PubMedCAS Google Scholar
Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, Solari A, Bobisse S, Rondina MB, Guzzardo V et al (2009) A Mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell 137:87–98 PubMedCAS Google Scholar
Akiyoshi S, Inoue H, Hanai J, Kusanagi K, Nemoto N, Miyazono K, Kawabata M (1999) c-Ski acts as a transcriptional co-repressor in transforming growth factor-β signaling through interaction with Smads. J Biol Chem 274:35269–35277 PubMedCAS Google Scholar
Alarcón C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ et al (2009) Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-β pathways. Cell 139:757–769 PubMed Google Scholar
Alcorn JF, Guala AS, Velden J van der, McElhinney B, Irvin CG, Davis RJ, Janssen-Heininger YM (2008) Jun N-terminal kinase 1 regulates epithelial-to-mesenchymal transition induced by TGF-β1. J Cell Sci 121:1036–1045 PubMedCAS Google Scholar
Araki S, Eitel JA, Batuello CN, Bijangi-Vishehsaraei K, Xie XJ, Danielpour D, Pollok KE, Boothman DA, Mayo LD (2010) TGF-β1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J Clin Invest 120:290–302 PubMedCAS Google Scholar
Azar R, Alard A, Susini C, Bousquet C, Pyronnet S (2009) 4E-BP1 is a target of Smad4 essential for TGFβ-mediated inhibition of cell proliferation. EMBO J 28:3514–3522 PubMedCAS Google Scholar
Benus GF, Wierenga AT, Gorter DJ de, Schuringa JJ, Bennekum AM van, Drenth-Diephuis L, Vellenga E, Eggen BJ (2005) Inhibition of the transforming growth factor β (TGFβ) pathway by interleukin-1β is mediated through TGFβ-activated kinase 1 phosphorylation of SMAD3. Mol Biol Cell 16:3501–3510 PubMedCAS Google Scholar
Berx G, Raspe E, Christofori G, Thiery JP, Sleeman JP (2007) Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin Exp Metastasis 24:587–597 PubMedCAS Google Scholar
Bian Y, Terse A, Du J, Hall B, Molinolo A, Zhang P, Chen W, Flanders KC, Gutkind JS, Wakefield LM et al (2009) Progressive tumor formation in mice with conditional deletion of TGF-β signaling in head and neck epithelia is associated with activation of the PI3K/Akt pathway. Cancer Res 69:5918–5926 PubMedCAS Google Scholar
Bierie B, Moses HL (2006) TGF-β and cancer. Cytokine Growth Factor Rev 17:29–40 PubMedCAS Google Scholar
Brandl M, Seidler B, Haller F, Adamski J, Schmid RM, Saur D, Schneider G (2010) IKKα controls canonical TGFβ-SMAD signaling to regulate genes expressing SNAIL and SLUG during EMT in panc1 cells. J Cell Sci 123:4231–4239 PubMedCAS Google Scholar
Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589 PubMedCAS Google Scholar
Caestecker MP de, Parks WT, Frank CJ, Castagnino P, Bottaro DP, Roberts AB, Lechleider RJ (1998) Smad2 transduces common signals from receptor serine-threonine and tyrosine kinases. Genes Dev 12:1587–1592 PubMed Google Scholar
Chacko BM, Qin BY, Tiwari A, Shi G, Lam S, Hayward LJ, De Caestecker M, Lin K (2004) Structural basis of heteromeric smad protein assembly in TGF-β signaling. Mol Cell 15:813–823 PubMedCAS Google Scholar
Chang CC, Lin DY, Fang HI, Chen RH, Shih HM (2005) Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4. J Biol Chem 280:10164–10173 PubMedCAS Google Scholar
Chaudhury A, Hussey GS, Ray PS, Jin G, Fox PL, Howe PH (2010) TGF-β-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nat Cell Biol 12:286–293 PubMedCAS Google Scholar
Daly AC, Randall RA, Hill CS (2008) Transforming growth factor β-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol Cell Biol 28:6889–6902 PubMedCAS Google Scholar
Daly AC, Vizan P, Hill CS (2010) Smad3 protein levels are modulated by Ras activity and during the cell cycle to dictate transforming growth factor-β responses. J Biol Chem 285:6489–6497 PubMedCAS Google Scholar
Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454:56–61 PubMedCAS Google Scholar
Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A (2010) Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 39:373–384 PubMedCAS Google Scholar
Descargues P, Sil AK, Sano Y, Korchynskyi O, Han G, Owens P, Wang X-J, Karin M (2008) IKKα is a critical coregulator of a Smad4 independent TGFβ-Smad2/3 signaling pathway that controls keratinocyte differentiation. Proc Natl Acad Sci USA 105:2487–2492 PubMedCAS Google Scholar
Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL (2003) Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat Cell Biol 5:410–421 PubMed Google Scholar
Ding Z, Wu CJ, Chu GC, Xiao Y, Ho D, Zhang J, Perry SR, Labrot ES, Wu X, Lis R et al (2011) SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 470:269–273 PubMedCAS Google Scholar
Dong C, Li Z, Alvarez R Jr, Feng X-H, Goldschmidt-Clermont PJ (2000) Microtubule binding to Smads may regulate TGFβ activity. Mol Cell 5:27–34 PubMedCAS Google Scholar
Dupont S, Zacchigna L, Cordenonsi M, Soligo S, Adorno M, Rugge M, Piccolo S (2005) Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell 121:87–99 PubMedCAS Google Scholar
Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, Martello G, Stinchfield MJ, Soligo S, Morsut L et al (2009) FAM/USP9x, a deubiquitinating enzyme essential for TGFβ signaling, controls Smad4 monoubiquitination. Cell 136:123–135 PubMedCAS Google Scholar
Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K (2001) Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276:12477–12480 PubMedCAS Google Scholar
Erickson RA, Liu X (2009) Association of v-ErbA with Smad4 disrupts TGF-β signaling. Mol Biol Cell 20:1509–1519 PubMedCAS Google Scholar
Feng X-H, Derynck R (1997) A kinase subdomain of transforming growth factor-β (TGF-β) type I receptor determines the TGF-β intracellular signaling specificity. EMBO J 16:3912–3923 PubMedCAS Google Scholar
Feng XH, Liang YY, Liang M, Zhai W, Lin X (2002) Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-β-mediated induction of the CDK inhibitor p15(Ink4B). Mol Cell 9:133–143 PubMedCAS Google Scholar
Ferrand N, Atfi A, Prunier C (2010) The oncoprotein c-ski functions as a direct antagonist of the transforming growth factor-β type I receptor. Cancer Res 70:8457–8466 PubMedCAS Google Scholar
Fuentealba LC, Eivers E, Ikeda A, Hurtado C, Kuroda H, Pera EM, De Robertis EM (2007) Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131:980–993 PubMedCAS Google Scholar
Fukuchi M, Imamura T, Chiba T, Ebisawa T, Kawabata M, Tanaka K, Miyazono K (2001) Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins. Mol Biol Cell 12:1431–1443 PubMedCAS Google Scholar
Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E (2009) Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 11:1287–1296 PubMedCAS Google Scholar
Goumans M-J, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C, Karlsson S, Dijke P ten (2003) Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling. Mol Cell 12:817–828 PubMedCAS Google Scholar
Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S, Morris M, Wyatt L, Farshid G, Lim YY et al (2011) An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 22:1686–1698 Google Scholar
Grönroos E, Hellman U, Heldin C-H, Ericsson J (2002) Control of Smad7 stability by competition between acetylation and ubiquitination. Mol Cell 10:483–493 PubMed Google Scholar
Guo X, Waddell DS, Wang W, Wang Z, Liberati NT, Yong S, Liu X, Wang XF (2008) Ligand-dependent ubiquitination of Smad3 is regulated by casein kinase 1 gamma 2, an inhibitor of TGF-β signaling. Oncogene 27:7235–7247 PubMedCAS Google Scholar
Hahn SA, Schutte M, Hoque ATMS, Moskaluk CA, Costa LT da, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH et al (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353 PubMedCAS Google Scholar
Halder SK, Rachakonda G, Deane NG, Datta PK (2008) Smad7 induces hepatic metastasis in colorectal cancer. Br J Cancer 99:957–965 PubMedCAS Google Scholar
Hannigan A, Smith P, Kalna G, Lo Nigro C, Orange C, O'Brien DI, Shah R, Syed N, Spender LC, Herrera B et al (2010) Epigenetic downregulation of human disabled homolog 2 switches TGF-β from a tumor suppressor to a tumor promoter. J Clin Invest 120:2842–2857 PubMedCAS Google Scholar
Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MAJ, Wrana JL et al (1997) The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 89:1165–1173 PubMedCAS Google Scholar
Hayes S, Chawla A, Corvera S (2002) TGF β receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J Cell Biol 158:1239–1249 PubMedCAS Google Scholar
He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massagué J (2006) Hematopoiesis controlled by distinct TIF1γ and Smad4 branches of the TGFβ pathway. Cell 125:929–941 PubMedCAS Google Scholar
Heikkinen PT, Nummela M, Jokilehto T, Grenman R, Kähäri VM, Jaakkola PM (2010a) Hypoxic conversion of SMAD7 function from an inhibitor into a promoter of cell invasion. Cancer Res 70:5984–5993 PubMedCAS Google Scholar
Heikkinen PT, Nummela M, Leivonen SK, Westermarck J, Hill CS, Kahari VM, Jaakkola PM (2010b) Hypoxia-activated Smad3-specific dephosphorylation by PP2A. J Biol Chem 285:3740–3749 PubMedCAS Google Scholar
Heldin C-H, Landström M, Moustakas A (2009) Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol 21:166–176 PubMedCAS Google Scholar
Ho J, Cocolakis E, Dumas VM, Posner BI, Laporte SA, Lebrun JJ (2005) The G protein-coupled receptor kinase-2 is a TGFβ-inducible antagonist of TGFβ signal transduction. EMBO J 24:3247–3258 PubMedCAS Google Scholar
Hoot KE, Lighthall J, Han G, Lu SL, Li A, Ju W, Kulesz-Martin M, Bottinger E, Wang XJ (2008) Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression. J Clin Invest 118:2722–2732 PubMedCAS Google Scholar
Horiguchi K, Shirakihara T, Nakano A, Imamura T, Miyazono K, Saitoh M (2009) Role of Ras signaling in the induction of snail by transforming growth factor-β. J Biol Chem 284:245–253 PubMedCAS Google Scholar
Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558 PubMedCAS Google Scholar
Huminiecki L, Goldovsky L, Freilich S, Moustakas A, Ouzounis CA, Heldin C-H (2009) Emergence, development and diversification of the TGF-β signalling pathway within the animal kingdom. BMC Evol Biol 9:28 PubMed Google Scholar
Ikushima H, Miyazono K (2010) TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer 10:415–424 PubMedCAS Google Scholar
Ito I, Hanyu A, Wayama M, Goto N, Katsuno Y, Kawasaki S, Nakajima Y, Kajiro M, Komatsu Y, Fujimura A et al (2010) Estrogen inhibits transforming growth factor β signaling by promoting Smad2/3 degradation. J Biol Chem 285:14747–14755 PubMedCAS Google Scholar
Itoh S, Landström M, Hermansson A, Itoh F, Heldin C-H, Heldin N-E, Dijke P ten (1998) Transforming growth factor β1 induces nuclear export of inhibitory Smad7. J Biol Chem 273:29195–29201 PubMedCAS Google Scholar
Jayaraman L, Massagué J (2000) Distinct oligomeric states of SMAD proteins in the transforming growth factor-β pathway. J Biol Chem 275:40710–40717 PubMedCAS Google Scholar
Ju W, Ogawa A, Heyer J, Nierhof D, Yu L, Kucherlapati R, Shafritz DA, Böttinger EP (2006) Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Mol Cell Biol 26:654–667 PubMedCAS Google Scholar
Kamaraju AK, Roberts AB (2005) Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-β-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo. J Biol Chem 280:1024–1036 PubMedCAS Google Scholar
Kamiya Y, Miyazono K, Miyazawa K (2010) Smad7 inhibits transforming growth factor-β family type I receptors through two distinct modes of interaction. J Biol Chem 285:30804–30813 PubMedCAS Google Scholar
Kang JS, Liu C, Derynck R (2009) New regulatory mechanisms of TGF-β receptor function. Trends Cell Biol 19:385–394 PubMedCAS Google Scholar
Kawabata M, Inoue H, Hanyu A, Imamura T, Miyazono K (1998) Smad proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors. EMBO J 17:4056–4065 PubMedCAS Google Scholar
Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Mol Cell 6:1365–1375 PubMedCAS Google Scholar
Kim KK, Wei Y, Szekeres C, Kugler MC, Wolters PJ, Hill ML, Frank JA, Brumwell AN, Wheeler SE, Kreidberg JA et al (2009a) Epithelial cell α3β1 integrin links β-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J Clin Invest 119:213–224 PubMedCAS Google Scholar
Kim Y, Kugler MC, Wei Y, Kim KK, Li X, Brumwell AN, Chapman HA (2009b) Integrin α3β1-dependent β-catenin phosphorylation links epithelial Smad signaling to cell contacts. J Cell Biol 184:309–322 PubMedCAS Google Scholar
Koinuma D, Shinozaki M, Komuro A, Goto K, Saitoh M, Hanyu A, Ebina M, Nukiwa T, Miyazawa K, Imamura T et al (2003) Arkadia amplifies TGF-β superfamily signalling through degradation of Smad7. EMBO J 22:6458–6470 PubMedCAS Google Scholar
Koinuma D, Tsutsumi S, Kamimura N, Taniguchi H, Miyazawa K, Sunamura M, Imamura T, Miyazono K, Aburatani H (2009) Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor beta signaling. Mol Cell Biol 29:172–186 PubMedCAS Google Scholar
Komuro A, Imamura T, Saitoh M, Yoshida Y, Yamori T, Miyazono K, Miyazawa K (2004) Negative regulation of transforming growth factor-β (TGF-β) signaling by WW domain-containing protein 1 (WWP1). Oncogene 23:6914–6923 PubMedCAS Google Scholar
Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ (2008) MicroRNA-155 is regulated by the transforming growth factor β/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28:6773–6784 PubMedCAS Google Scholar
Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914 PubMedCAS Google Scholar
Korpal M, Yan J, Lu X, Xu S, Lerit DA, Kang Y (2009) Imaging transforming growth factor-β signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat Med 15:960–966 PubMedCAS Google Scholar
Kowanetz M, Lönn P, Vanlandewijck M, Kowanetz K, Heldin C-H, Moustakas A (2008) TGFβ induces SIK to negatively regulate type I receptor kinase signaling. J Cell Biol 182:655–662 PubMedCAS Google Scholar
Kretzschmar M, Doody J, Timokhina I, Massagué J (1999) A mechanism of repression of TGFβ/Smad signaling by oncogenic Ras. Genes Dev 13:804–816 PubMedCAS Google Scholar
Kuratomi G, Komuro A, Goto K, Shinozaki M, Miyazawa K, Miyazono K, Imamura T (2005) NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4–2) negatively regulates TGF-β (transforming growth factor-β) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-β type I receptor. Biochem J 386:461–470 PubMedCAS Google Scholar
Kurisaki A, Kose S, Yoneda Y, Heldin C-H, Moustakas A (2001) Transforming growth factor-β induces nuclear import of Smad3 in an importin-β1 and Ran-dependent manner. Mol Biol Cell 12:1079–1091 PubMedCAS Google Scholar
Kurisaki A, Kurisaki K, Kowanetz M, Sugino H, Yoneda Y, Heldin C-H, Moustakas A (2006) The mechanism of nuclear export of Smad3 involves exportin 4 and Ran. Mol Cell Biol 26:1318–1332 PubMedCAS Google Scholar
Le Scolan E, Zhu Q, Wang L, Bandyopadhyay A, Javelaud D, Mauviel A, Sun L, Luo K (2008) Transforming growth factor-β suppresses the ability of Ski to inhibit tumor metastasis by inducing its degradation. Cancer Res 68:3277–3285 PubMed Google Scholar
Lecanda J, Ganapathy V, D'Aquino-Ardalan C, Evans B, Cadacio C, Ayala A, Gold LI (2009) TGFβ prevents proteasomal degradation of the cyclin-dependent kinase inhibitor p27kip1 for cell cycle arrest. Cell Cycle 8:742–756 PubMedCAS Google Scholar
Lee B-H, Chen W, Stippec S, Cobb MH (2007) Biological cross-talk between WNK1 and the transforming growth factor β-Smad signaling pathway. J Biol Chem 282:17985–17996 PubMedCAS Google Scholar
Lee PS, Chang C, Liu D, Derynck R (2003) Sumoylation of Smad4, the common Smad mediator of transforming growth factor-β family signaling. J Biol Chem 278:27853–27863 PubMedCAS Google Scholar
Levy L, Howell M, Das D, Harkin S, Episkopou V, Hill CS (2007) Arkadia activates Smad3/Smad4-dependent transcription by triggering signal-induced SnoN degradation. Mol Cell Biol 27:6068–6083 PubMedCAS Google Scholar
Liang M, Liang YY, Wrighton K, Ungermannova D, Wang XP, Brunicardi FC, Liu X, Feng XH, Lin X (2004) Ubiquitination and proteolysis of cancer-derived Smad4 mutants by SCFSkp2. Mol Cell Biol 24:7524–7537 PubMedCAS Google Scholar
Lin X, Liang M, Feng XH (2000) Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-β signaling. J Biol Chem 275:36818–36822 PubMedCAS Google Scholar
Lin X, Liang M, Liang YY, Brunicardi FC, Feng XH (2003) SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J Biol Chem 278:31043–31048 PubMedCAS Google Scholar
Lin X, Duan X, Liang YY, Su Y, Wrighton KH, Long J, Hu M, Davis CM, Wang J, Brunicardi FC et al (2006) PPM1A functions as a Smad phosphatase to terminate TGFβ signaling. Cell 125:915–928 PubMedCAS Google Scholar
Liu IM, Schilling SH, Knouse KA, Choy L, Derynck R, Wang XF (2009) TGFbeta-stimulated Smad1/5 phosphorylation requires the ALK5 L45 loop and mediates the pro-migratory TGFbeta switch. EMBO J 28:88–98 PubMedCAS Google Scholar
Liu W, Rui H, Wang J, Lin S, He Y, Chen M, Li Q, Ye Z, Zhang S, Chan SC et al (2006) Axin is a scaffold protein in TGF-β signaling that promotes degradation of Smad7 by Arkadia. EMBO J 25:1646–1658 PubMedCAS Google Scholar
Lo RS, Chen YG, Shi Y, Pavletich NP, Massagué J (1998) The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF-β receptors. EMBO J 17:996–1005 PubMedCAS Google Scholar
Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S, Zhou Q (1999) The Ski oncoprotein interacts with the Smad proteins to repress TGFβ signaling. Genes Dev 13:2196–2206 PubMedCAS Google Scholar
Lönn P, Heide L van der, Dahl M, Hellman U, Heldin C-H, Moustakas A (2010) PARP-1 attenuates Smad-mediated transcription. Mol Cell 40:521–532 PubMed Google Scholar
Massagué J (2004) G1 cell-cycle control and cancer. Nature 432:298–306 PubMed Google Scholar
Matsuura I, Denissova NG, Wang G, He D, Long J, Liu F (2004) Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 430:226–231 PubMedCAS Google Scholar
Matsuura I, Chiang KN, Lai CY, He D, Wang G, Ramkumar R, Uchida T, Ryo A, Lu K, Liu F (2010) Pin1 promotes transforming growth factor-β-induced migration and invasion. J Biol Chem 285:1754–1764 PubMedCAS Google Scholar
Mavrakis KJ, Andrew RL, Lee KL, Petropoulou C, Dixon JE, Navaratnam N, Norris DP, Episkopou V (2007) Arkadia enhances Nodal/TGF-β signaling by coupling phospho-Smad2/3 activity and turnover. PLoS Biol 5:e67 PubMed Google Scholar
Millet C, Yamashita M, Heller M, Yu LR, Veenstra TD, Zhang YE (2009) A negative feedback control of transforming growth factor-β signaling by glycogen synthase kinase 3-mediated Smad3 linker phosphorylation at Ser-204. J Biol Chem 284:19808–19816 PubMedCAS Google Scholar
Miyake T, Alli NS, McDermott JC (2010) Nuclear function of Smad7 promotes myogenesis. Mol Cell Biol 30:722–735 PubMedCAS Google Scholar
Morén A, Hellman U, Inada Y, Imamura T, Heldin C-H, Moustakas A (2003) Differential ubiquitination defines the functional status of the tumor suppressor Smad4. J Biol Chem 278:33571–33582 PubMed Google Scholar
Morén A, Raja E, Heldin C-H, Moustakas A (2011) Negative regulation of TGFβ signaling by the kinase LKB1 and the scaffolding protein LIP1. J Biol Chem 286:341–353 PubMed Google Scholar
Mori S, Matsuzaki K, Yoshida K, Furukawa F, Tahashi Y, Yamagata H, Sekimoto G, Seki T, Matsui H, Nishizawa M et al (2004) TGF-β and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions. Oncogene 23:7416–7429 PubMedCAS Google Scholar
Moustakas A, Heldin C-H (2005) Non-Smad TGF-β signals. J Cell Sci 118:3573–3584 PubMedCAS Google Scholar
Moustakas A, Heldin C-H (2007) Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98:1512–1520 PubMedCAS Google Scholar
Moustakas A, Heldin C-H (2009) The regulation of TGFβ signal transduction. Development 136:3699–3714 PubMedCAS Google Scholar
Nagano Y, Mavrakis KJ, Lee KL, Fujii T, Koinuma D, Sase H, Yuki K, Isogaya K, Saitoh M, Imamura T et al (2007) Arkadia induces degradation of SnoN and c-Ski to enhance transforming growth factor-β signaling. J Biol Chem 282:20492–20501 PubMedCAS Google Scholar
Nakahata S, Yamazaki S, Nakauchi H, Morishita K (2010) Downregulation of ZEB1 and overexpression of Smad7 contribute to resistance to TGF-β1-mediated growth suppression in adult T-cell leukemia/lymphoma. Oncogene 29:4157–4169 PubMedCAS Google Scholar
Nakano A, Koinuma D, Miyazawa K, Uchida T, Saitoh M, Kawabata M, Hanai J, Akiyama H, Abe M, Miyazono K et al (2009) Pin1 down-regulates transforming growth factor-β (TGF-β) signaling by inducing degradation of Smad proteins. J Biol Chem 284:6109–6115 PubMedCAS Google Scholar
Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin N-E, Heldin C-H et al (1997) Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature 389:631–635 PubMedCAS Google Scholar
Niimi H, Pardali K, Vanlandewijck M, Heldin C-H, Moustakas A (2007) Notch signaling is necessary for epithelial growth arrest by TGF-β. J Cell Biol 176:695–707 PubMedCAS Google Scholar
Ohshima T, Shimotohno K (2003) Transforming growth factor-β-mediated signaling via the p38 MAP kinase pathway activates Smad-dependent transcription through SUMO-1 modification of Smad4. J Biol Chem 278:50833–50842 PubMedCAS Google Scholar
Papageorgis P, Lambert AW, Ozturk S, Gao F, Pan H, Manne U, Alekseyev YO, Thiagalingam A, Abdolmaleky HM, Lenburg M et al (2010) Smad signaling is required to maintain epigenetic silencing during breast cancer progression. Cancer Res 70:968–978 PubMedCAS Google Scholar
Pardali E, Goumans MJ, Dijke P ten (2010) Signaling by members of the TGF-β family in vascular morphogenesis and disease. Trends Cell Biol 20:556–567 PubMedCAS Google Scholar
Peinado H, Quintanilla M, Cano A (2003) Transforming growth factor β-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 278:21113–21123 PubMedCAS Google Scholar
Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7:415–428 PubMedCAS Google Scholar
Penheiter SG, Mitchell H, Garamszegi N, Edens M, Dore JJ Jr, Leof EB (2002) Internalization-dependent and -independent requirements for transforming growth factor β receptor signaling via the Smad pathway. Mol Cell Biol 22:4750–4759 PubMedCAS Google Scholar
Petersen M, Pardali E, Horst G van der, Cheung H, Hoogen C van den, Pluijm G van der, Dijke P ten (2010) Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene 29:1351–1361 PubMedCAS Google Scholar
Pierreux CE, Nicolas FJ, Hill CS (2000) Transforming growth factor β-independent shuttling of Smad4 between the cytoplasm and nucleus. Mol Cell Biol 20:9041–9054 PubMedCAS Google Scholar
Pulaski L, Landström M, Heldin C-H, Souchelnytskyi S (2001) Phosphorylation of Smad7 at Ser-249 does not interfere with its inhibitory role in transforming growth factor-β-dependent signaling but affects Smad7-dependent transcriptional activation. J Biol Chem 276:14344–14349 PubMedCAS Google Scholar
Roberts AB, Wakefield LM (2003) The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA 100:8621–8623 PubMedCAS Google Scholar
Roelen BA, Cohen OS, Raychowdhury MK, Chadee DN, Zhang Y, Kyriakis JM, Alessandrini AA, Lin HY (2003) Phosphorylation of threonine 276 in Smad4 is involved in transforming growth factor-β-induced nuclear accumulation. Am J Physiol Cell Physiol 285:C823–C830 PubMedCAS Google Scholar
Ross S, Hill CS (2008) How the Smads regulate transcription. Int J Biochem Cell Biol 40:383–408 PubMedCAS Google Scholar
Runyan CE, Hayashida T, Hubchak S, Curley JF, Schnaper HW (2009) Role of SARA (SMAD anchor for receptor activation) in maintenance of epithelial cell phenotype. J Biol Chem 284:25181–25189 PubMedCAS Google Scholar
Sapkota G, Alarcón C, Spagnoli FM, Brivanlou AH, Massagué J (2007) Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol Cell 25:441–454 PubMedCAS Google Scholar
Schmierer B, Tournier AL, Bates PA, Hill CS (2008) Mathematical modeling identifies Smad nucleocytoplasmic shuttling as a dynamic signal-interpreting system. Proc Natl Acad Sci USA 105:6608–6613 PubMedCAS Google Scholar
Seo SR, Lallemand F, Ferrand N, Pessah M, L'Hoste S, Camonis J, Atfi A (2004) The novel E3 ubiquitin ligase Tiul1 associates with TGIF to target Smad2 for degradation. EMBO J 23:3780–3792 PubMedCAS Google Scholar
Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massagué J (2001) TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 3:400–408 PubMedCAS Google Scholar
Seong H-A, Jung H, Ha H (2010) Murine protein serine/threonine kinase 38 stimulates TGF-β signaling in a kinase-dependent manner via direct phosphorylation of Smad proteins. J Biol Chem 285:30959–30970 PubMedCAS Google Scholar
Shan B, Yao TP, Nguyen HT, Zhuo Y, Levy DR, Klingsberg RC, Tao H, Palmer ML, Holder KN, Lasky JA (2008) Requirement of HDAC6 for transforming growth factor-β1-induced epithelial-mesenchymal transition. J Biol Chem 283:21065–21073 PubMedCAS Google Scholar
Shi W, Sun C, He B, Xiong W, Shi X, Yao D, Cao X (2004) GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor. J Cell Biol 164:291–300 PubMedCAS Google Scholar
Shi Y, Massagué J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113:685–700 PubMedCAS Google Scholar
Shi Y, Wang YF, Jayaraman L, Yang HJ, Massagué J, Pavletich NP (1998) Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-β signaling. Cell 94:585–594 PubMedCAS Google Scholar
Shirakihara T, Horiguchi K, Miyazawa K, Ehata S, Shibata T, Morita I, Miyazono K, Saitoh M (2011) TGF-β regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J 30:783–795 PubMedCAS Google Scholar
Shukla A, Malik M, Cataisson C, Ho Y, Friesen T, Suh KS, Yuspa SH (2009) TGF-β signalling is regulated by Schnurri-2-dependent nuclear translocation of CLIC4 and consequent stabilization of phospho-Smad2 and 3. Nat Cell Biol 11:777–784 PubMedCAS Google Scholar
Simonsson M, Heldin C-H, Ericsson J, Grönroos E (2005) The balance between acetylation and deacetylation controls Smad7 stability. J Biol Chem 280:21797–21803 PubMedCAS Google Scholar
Simonsson M, Kanduri M, Grönroos E, Heldin C-H, Ericsson J (2006) The DNA binding activities of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. J Biol Chem 281:39870–39880 PubMedCAS Google Scholar
Singh G, Singh SK, Konig A, Reutlinger K, Nye MD, Adhikary T, Eilers M, Gress TM, Fernandez-Zapico ME, Ellenrieder V (2010) Sequential activation of NFAT and c-Myc transcription factors mediates the TGF-β switch from a suppressor to a promoter of cancer cell proliferation. J Biol Chem 285:27241–27250 PubMedCAS Google Scholar
Smith AP, Verrecchia A, Faga G, Doni M, Perna D, Martinato F, Guccione E, Amati B (2009) A positive role for Myc in TGFβ-induced Snail transcription and epithelial-to-mesenchymal transition. Oncogene 28:422–430 PubMedCAS Google Scholar
Soond SM, Chantry A (2011) Selective targeting of activating and inhibitory Smads by distinct WWP2 ubiquitin ligase isoforms differentially modulates TGFβ signalling and EMT. Oncogene (in press)
Souchelnytskyi S, Tamaki K, Engström U, Wernstedt C, Dijke P ten, Heldin C-H (1997) Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-β signaling. J Biol Chem 272:28107–28115 PubMedCAS Google Scholar
Stroschein SL, Wang W, Zhou SL, Zhou Q, Luo KX (1999) Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science 286:771–774 PubMedCAS Google Scholar
Tajima Y, Goto K, Yoshida M, Shinomiya K, Sekimoto T, Yoneda Y, Miyazono K, Imamura T (2003) Chromosomal region maintenance 1 (CRM1)-dependent nuclear export of Smad ubiquitin regulatory factor 1 (Smurf1) is essential for negative regulation of transforming growth factor-β signaling by Smad7. J Biol Chem 278:10716–10721 PubMedCAS Google Scholar
Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890 PubMedCAS Google Scholar
Thuault S, Tan E-J, Peinado H, Cano A, Heldin C-H, Moustakas A (2008) HMGA2 and Smads coregulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem 283:33437–33446 PubMedCAS Google Scholar
Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 95:779–791 PubMedCAS Google Scholar
Tu AW, Luo K (2007) Acetylation of Smad2 by the co-activator p300 regulates activin and transforming growth factor β response. J Biol Chem 282:21187–21196 PubMedCAS Google Scholar
Vijayachandra K, Higgins W, Lee J, Glick A (2009) Induction of p16ink4a and p19ARF by TGFβ1 contributes to growth arrest and senescence response in mouse keratinocytes. Mol Carcinog 48:181–186 PubMedCAS Google Scholar
Vincent T, Neve EPA, Johnson JR, Kukalev A, Rojo F, Albanell J, Pietras K, Virtanen I, Philipson L, Leopold PL et al (2009) A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial-mesenchymal transition. Nat Cell Biol 11:943–950 PubMedCAS Google Scholar
Waerner T, Alacakaptan M, Tamir I, Oberauer R, Gal A, Brabletz T, Schreiber M, Jechlinger M, Beug H (2006) ILEI: a cytokine essential for EMT, tumor formation, and late events in metastasis in epithelial cells. Cancer Cell 10:227–239 PubMedCAS Google Scholar
Wan M, Cao X, Wu Y, Bai S, Wu L, Shi X, Wang N (2002) Jab1 antagonizes TGF-β signaling by inducing Smad4 degradation. EMBO Rep 3:171–176 PubMedCAS Google Scholar
Wan M, Tang Y, Tytler EM, Lu C, Jin B, Vickers SM, Yang L, Shi X, Cao X (2004) Smad4 protein stability is regulated by ubiquitin ligase SCF β-TrCP1. J Biol Chem 279:14484–14487 PubMedCAS Google Scholar
Watanabe M, Masuyama N, Fukuda M, Nishida E (2000) Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal. EMBO Rep 1:176–182 PubMedCAS Google Scholar
Watanabe Y, Itoh S, Goto T, Ohnishi E, Inamitsu M, Itoh F, Satoh K, Wiercinska E, Yang W, Shi L et al (2010) TMEPAI, a transmembrane TGF-β-inducible protein, sequesters Smad proteins from active participation in TGF-β signaling. Mol Cell 37:123–134 PubMedCAS Google Scholar
Wicks SJ, Lui S, Abdel-Wahab N, Mason RM, Chantry A (2000) Inactivation of smad-transforming growth factor β signaling by Ca(2+)-calmodulin-dependent protein kinase II. Mol Cell Biol 20:8103–8111 PubMedCAS Google Scholar
Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R et al (2001) Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-β signaling. Mol Cell 8:1277–1289 PubMedCAS Google Scholar
Wu JW, Krawitz AR, Chai J, Li W, Zhang F, Luo K, Shi Y (2002) Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-β signaling. Cell 111:357–367 PubMedCAS Google Scholar
Wu MY, Hill CS (2009) Tgf-β superfamily signaling in embryonic development and homeostasis. Dev Cell 16:329–343 PubMedCAS Google Scholar
Wu S, Cetinkaya C, Munoz-Alonso MJ, Lehr N von der, Bahram F, Beuger V, Eilers M, Leon J, Larsson LG (2003) Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 22:351–360 PubMedCAS Google Scholar
Xiao Z, Liu X, Lodish HF (2000) Importin β mediates nuclear translocation of Smad 3. J Biol Chem 275:23425–23428 PubMedCAS Google Scholar
Xiao Z, Latek R, Lodish HF (2003) An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity. Oncogene 22:1057–1069 PubMedCAS Google Scholar
Xin H, Xu X, Li L, Ning H, Rong Y, Shang Y, Wang Y, Fu XY, Chang Z (2005) CHIP controls the sensitivity of transforming growth factor-β signaling by modulating the basal level of Smad3 through ubiquitin-mediated degradation. J Biol Chem 280:20842–20850 PubMedCAS Google Scholar
Xu L, Kang Y, Col S, Massagué J (2002) Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFβ signaling complexes in the cytoplasm and nucleus. Mol Cell 10:271–282 PubMedCAS Google Scholar
Xu L, Yao X, Chen X, Lu P, Zhang B, Ip YT (2007) Msk is required for nuclear import of TGF-β/BMP-activated Smads. J Cell Biol 178:981–994 PubMedCAS Google Scholar
Xu X, Ehdaie B, Ohara N, Yoshino T, Deng CX (2010) Synergistic action of Smad4 and Pten in suppressing pancreatic ductal adenocarcinoma formation in mice. Oncogene 29:674–686 PubMedCAS Google Scholar
Yakymovych I, Dijke P ten, Heldin C-H, Souchelnytskyi S (2001) Regulation of Smad signaling by protein kinase C. FASEB J 15:553–555 PubMedCAS Google Scholar
Yang J, Wahdan-Alaswad R, Danielpour D (2009) Critical role of Smad2 in tumor suppression and transforming growth factor-β-induced apoptosis of prostate epithelial cells. Cancer Res 69:2185–2190 PubMedCAS Google Scholar
Yao X, Chen X, Cottonham C, Xu L (2008) Preferential utilization of Imp7/8 in nuclear import of Smads. J Biol Chem 283:22867–22874 PubMedCAS Google Scholar
Yu J, Pan L, Qin X, Chen H, Xu Y, Chen Y, Tang H (2010) MTMR4 attenuates transforming growth factor β (TGFβ) signaling by dephosphorylating R-Smads in endosomes. J Biol Chem 285:8454–8462 PubMedCAS Google Scholar
Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E, Böttinger EP (2001) Genetic programs of epithelial cell plasticity directed by transforming growth factor-β. Proc Natl Acad Sci USA 98:6686–6691 PubMedCAS Google Scholar
Zeng Q, Phukan S, Xu Y, Sadim M, Rosman DS, Pennison M, Liao J, Yang GY, Huang CC, Valle L et al (2009) Tgfbr1 haploinsufficiency is a potent modifier of colorectal cancer development. Cancer Res 69:678–686 PubMedCAS Google Scholar
Zhang S, Fei T, Zhang L, Zhang R, Chen F, Ning Y, Han Y, Feng XH, Meng A, Chen YG (2007) Smad7 antagonizes transforming growth factor β signaling in the nucleus by interfering with functional Smad-DNA complex formation. Mol Cell Biol 27:4488–4499 PubMedCAS Google Scholar
Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R (2001) Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci USA 98:974–979 PubMedCAS Google Scholar
Zheng Y, Zhao YD, Gibbons M, Abramova T, Chu PY, Ash JD, Cunningham JM, Skapek SX (2010) Tgfβ signaling directly induces Arf promoter remodeling by a mechanism involving Smads 2/3 and p38 MAPK. J Biol Chem 285:35654–35664 PubMedCAS Google Scholar
Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH (1999) A Smad ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400:687–693 PubMedCAS Google Scholar
Zhu L, Wang L, Wang X, Luo X, Yang L, Zhang R, Yin H, Xie D, Pan Y, Chen Y (2011) Hepatic deletion of smad7 in mouse leads to spontaneous liver dysfunction and aggravates alcoholic liver injury. PLoS ONE 6:e17415 PubMedCAS Google Scholar
Zhu S, Wang W, Clarke DC, Liu X (2007) Activation of Mps1 promotes transforming growth factor-β-independent Smad signaling. J Biol Chem 282:18327–18338 PubMedCAS Google Scholar