Increased glycine-amidated hyocholic acid correlates to improved early weight loss after sleeve gastrectomy (original) (raw)

References

  1. Peterli R, Wolnerhanssen BK, Vetter D, Nett P, Gass M, Borbely Y, Peters T, Schiesser M, Schultes B, Beglinger C, Drewe J, Bueter M (2017) Laparoscopic sleeve gastrectomy versus Roux-Y-gastric bypass for morbid obesity-3-year outcomes of the prospective randomized Swiss Multicenter Bypass or Sleeve Study (SM-BOSS). Ann Surg 265:466–473
    Article PubMed Google Scholar
  2. Evers SS, Sandoval DA, Seeley RJ (2017) The physiology and molecular underpinnings of the effects of bariatric surgery on obesity and diabetes. Annu Rev Physiol 79:313–334
    Article CAS PubMed Google Scholar
  3. Fouladi F, Mitchell JE, Wonderlich JA, Steffen KJ (2016) The contributing role of bile acids to metabolic improvements after obesity and metabolic surgery. Obes Surg 26:2492–2502
    Article PubMed Google Scholar
  4. Escalona A, Munoz R, Irribarra V, Solari S, Allende F, Francisco Miquel J (2016) Bile acids synthesis decreases after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis 12:763–769
    Article PubMed Google Scholar
  5. Zhou H, Hylemon PB (2014) Bile acids are nutrient signaling hormones. Steroids 86:62–68
    Article CAS PubMed Google Scholar
  6. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B (1999) Identification of a nuclear receptor for bile acids. Science 284:1362–1365
    Article CAS PubMed Google Scholar
  7. de Aguiar Vallim TQ, Tarling EJ, Edwards PA (2013) Pleiotropic roles of bile acids in metabolism. Cell Metab 17:657–669
    Article PubMed PubMed Central Google Scholar
  8. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439(7075):484–489
    Article CAS PubMed Google Scholar
  9. Kumar DP, Rajagopal S, Mahavadi S, Mirshahi F, Grider JR, Murthy KS, Sanyal AJ (2012) Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells. Biochem Biophys Res Commun 427:600–605
    Article CAS PubMed PubMed Central Google Scholar
  10. Trabelsi MS, Daoudi M, Prawitt J, Ducastel S, Touche V, Sayin SI, Perino A, Brighton CA, Sebti Y, Kluza J, Briand O, Dehondt H, Vallez E, Dorchies E, Baud G, Spinelli V, Hennuyer N, Caron S, Bantubungi K, Caiazzo R, Reimann F, Marchetti P, Lefebvre P, Bäckhed F, Gribble FM, Schoonjans K, Pattou F, Tailleux A, Staels B, Lestavel S (2015) Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat Commun 6:7629
    Article PubMed PubMed Central Google Scholar
  11. Kohli R, Bradley D, Setchell KD, Eagon JC, Abumrad N, Klein S (2013) Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J Clin Endocrinol Metab 98:E708–E712
    Article CAS PubMed PubMed Central Google Scholar
  12. De Giorgi S, Campos V, Egli L, Toepel U, Carrel G, Cariou B, Rainteau D, Schneiter P, Tappy L, Giusti V (2015) Long-term effects of Roux-en-Y gastric bypass on postprandial plasma lipid and bile acid kinetics in female non diabetic subjects: a cross-sectional pilot study. Clin Nutr 34:911–917
    Article PubMed Google Scholar
  13. Werling M, Vincent RP, Cross GF, Marschall HU, Fandriks L, Lonroth H, Taylor DR, Alaghband-Zadeh J, Olbers T, Le Roux CW (2013) Enhanced fasting and post-prandial plasma bile acid responses after Roux-en-Y gastric bypass surgery. Scand J Gastroenterol 48:1257–1264
    Article PubMed Google Scholar
  14. Jahansouz C, Xu H, Hertzel AV, Serrot FJ, Kvalheim N, Cole A, Abraham A, Luthra G, Ewing K, Leslie DB, Bernlohr DA, Ikramuddin S (2016) Bile acids increase independently from hypocaloric restriction after bariatric surgery. Ann Surg 264:1022–1028
    Article PubMed Google Scholar
  15. Belgaumkar AP, Vincent RP, Carswell KA, Hughes RD, Alaghband-Zadeh J, Mitry RR, le Roux CW, Patel AG (2016) Changes in bile acid profile after laparoscopic sleeve gastrectomy are associated with improvements in metabolic profile and fatty liver disease. Obes Surg 26:1195–1202
    Article PubMed Google Scholar
  16. Steinert RE, Peterli R, Keller S, Meyer-Gerspach AC, Drewe J, Peters T, Beglinger C (2013) Bile acids and gut peptide secretion after bariatric surgery: a 1-year prospective randomized pilot trial. Obesity 21:E660–E668
    Article CAS PubMed Google Scholar
  17. Khan FH, Shaw L, Zhang W, Salazar Gonzalez RM, Mowery S, Oehrle M, Zhao X, Jenkins T, Setchell KD, Inge TH, Kohli R (2016) Fibroblast growth factor 21 correlates with weight loss after vertical sleeve gastrectomy in adolescents. Obesity 24:2377–2383
    Article CAS PubMed Google Scholar
  18. Myronovych A, Kirby M, Ryan KK, Zhang W, Jha P, Setchell KD, Dexheimer PJ, Aronow B, Seeley RJ, Kohli R (2014) Vertical sleeve gastrectomy reduces hepatic steatosis while increasing serum bile acids in a weight-loss-independent manner. Obesity 22:390–400
    Article CAS PubMed Google Scholar
  19. Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, Wilson-Perez HE, Sandoval DA, Kohli R, Backhed F, Seeley RJ (2014) FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509:183–188
    Article CAS PubMed PubMed Central Google Scholar
  20. Bathena SP, Mukherjee S, Olivera M, Alnouti Y (2013) The profile of bile acids and their sulfate metabolites in human urine and serum. J Chromatogr B 942–943:53–62
    Article Google Scholar
  21. Huang J, Bathena SP, Cxanaky IL, Alnouti Y (2011) Simultaneous characterization of bile acids and their sulfate metabolites in mouse liver, plasma, bile and urine using LC-MS/MS. J Pharm Biomed Anal 55:1111–1119
    Article CAS PubMed Google Scholar
  22. Haluzikova D, Lacinova Z, Kavalkova P, Drapalova J, Krizova J, Bartlova M, Mraz M, Petr T, Vitek L, Kasalicky M, Haluzik M (2013) Laparoscopic sleeve gastrectomy differentially affects serum concentrations of FGF-19 and FGF-21 in morbidly obese subjects. Obesity 21:1335–1342
    Article CAS PubMed Google Scholar
  23. Khan FH, Kohli R (2016) Bariatric surgery: the rise and fall of bile acids. Surg Obes Relat Dis 12:770–771
    Article PubMed Google Scholar
  24. Heuman DM (1989) Quantitative estimation of the hydrophilic-hydrophobic balance of mixed bile salt solutions. J Lipid Res 30:719–730
    CAS PubMed Google Scholar
  25. Radominska-Pyrek A, Zimniak P, Irshaid YM, Lester R, Tephly TR, St Pyrek J (1987) Glucuronidation of 6 alpa-hydroxy bile acids by human liver microsomes. J Clin Invest 80:234–241
    Article CAS PubMed PubMed Central Google Scholar
  26. Kuipers F, Bloks VW, Groen AK (2014) Beyond intestinal soap–bile acids in metabolic control. Nat Rev Endocrinol 10:488–498
    Article CAS PubMed Google Scholar
  27. Bodin K, Lindbom U, Diczfalusy U (2005) Novel pathways of bile acid metabolism involving CYP3A4. Biochim Biophys Acta 1687:84–93
    Article CAS PubMed Google Scholar
  28. Kano M, Matsumoto M, Kamano T, Tsurumaru M (1999) ELISA determination of serum hyocholic acid concentrations in humans and their possible clinical significance. Hepatogastroenterology 46:983–984
    CAS PubMed Google Scholar
  29. Chen J, Zhao KN, Chen C (2014) The role of CYP3A4 in the biotransformation of bile acids and therapeutic implication for cholestasis. Ann Transl Med 2:7
    PubMed PubMed Central Google Scholar
  30. Stedman C, Robertson G, Coulter S, Liddle C (2004) Feed-forward regulation of bile acid detoxification by CYP3A4: studies in humanized transgenic mice. J Biol Chem 279:11336–11343
    Article CAS PubMed Google Scholar
  31. Araki Y, Andoh A, Bamba H, Yoshikawa K, Doi H, Komai Y, Higuchi A, Fujiyama Y (2003) The cytotoxicity of hydrophobic bile acids is ameliorated by more hydrophilic bile acids in intestinal cell lines IEC-6 and Caco-2. Oncol Rep 10:1931–1936
    CAS PubMed Google Scholar
  32. Sato H, Macchiarulo A, Thomas C, Gioiello A, Une M, Hofmann AF, Saladin R, Schoonjans K, Pellicciari R, Auwerx J (2008) Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies. J Med Chem 51:1831–1841
    Article CAS PubMed Google Scholar
  33. Sayin SI, Wahlstrom A, Felin J, Jantti S, Marschall HU, Bamberg K, Angelin B, Hyotylainen T, Oresic M, Backhed F (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17:225–235
    Article CAS PubMed Google Scholar

Download references