Tipping the redox balance of oxidative stress in fibrogenic pathways in chronic kidney disease (original) (raw)

References

  1. McDonald SP, Craig JC (2004) Long-term survival of children with end-stage renal disease. N Engl J Med 350:2654–2662
    CAS PubMed Google Scholar
  2. Levey AS, Beto JA, Coronado BE, Eknoyan G, Foley RN, Kasiske BL, Klag MJ, Mailloux LU, Manske CL, Meyer KB, Parfrey PS, Pfeffer MA, Wenger NK, Wilson PW, Wright JT Jr (1998) Controlling the epidemic of cardiovascular disease in chronic renal disease: what do we know? What do we need to learn? Where do we go from here? National Kidney Foundation Task Force on Cardiovascular Disease. Am J Kidney Dis 32:853–906
    CAS PubMed Google Scholar
  3. Cheung AK, Sarnak MJ, Yan G, Dwyer JT, Heyka RJ, Rocco MV, Teehan BP, Levey AS (2000) Atherosclerotic cardiovascular disease risks in chronic hemodialysis patients. Kidney Int 58:353–362
    CAS PubMed Google Scholar
  4. Mitsnefes MM (2008) Cardiovascular complications of pediatric chronic kidney disease. Pediatr Nephrol 23:27–39
    PubMed PubMed Central Google Scholar
  5. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189
    CAS PubMed Google Scholar
  6. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313
    CAS PubMed Google Scholar
  7. Geiszt M, Leto TL (2004) The Nox family of NAD(P) H oxidases: host defense and beyond. J Biol Chem 279:51715–51718
    CAS PubMed Google Scholar
  8. Terada LS (2006) Specificity in reactive oxidant signaling: think globally, act locally. J Cell Biol 174:615–623
    CAS PubMed PubMed Central Google Scholar
  9. Segal BH, Davidson BA, Hutson AD, Russo TA, Holm BA, Mullan B, Habitzruther M, Holland SM, Knight PR 3rd (2007) Acid aspiration-induced lung inflammation and injury are exacerbated in NADPH oxidase-deficient mice. Am J Physiol Lung Cell Mol Physiol 292:L760–L768
    CAS PubMed Google Scholar
  10. Gao XP, Standiford TJ, Rahman A, Newstead M, Holland SM, Dinauer MC, Liu QH, Malik AB (2002) Role of NADPH oxidase in the mechanism of lung neutrophil sequestration and microvessel injury induced by Gram-negative sepsis: studies in p47phox−/− and gp91phox−/− mice. J Immunol 168:3974–3982
    CAS PubMed Google Scholar
  11. Morgenstern DE, Gifford MA, Li LL, Doerschuk CM, Dinauer MC (1997) Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. J Exp Med 185:207–218
    CAS PubMed PubMed Central Google Scholar
  12. Kassim SY, Fu X, Liles WC, Shapiro SD, Parks WC, Heinecke JW (2005) NADPH oxidase restrains the matrix metalloproteinase activity of macrophages. J Biol Chem 280:30201–30205
    CAS PubMed Google Scholar
  13. Snelgrove RJ, Edwards L, Williams AE, Rae AJ, Hussell T (2006) In the absence of reactive oxygen species, T cells default to a Th1 phenotype and mediate protection against pulmonary Cryptococcus neoformans infection. J Immunol 177:5509–5516
    CAS PubMed Google Scholar
  14. Doughan AK, Harrison DG, Dikalov SI (2008) Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 102:488–496
    CAS PubMed Google Scholar
  15. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88:E14–E22
    CAS PubMed Google Scholar
  16. Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG (2002) Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40:511–515
    CAS PubMed Google Scholar
  17. McNally JS, Davis ME, Giddens DP, Saha A, Hwang J, Dikalov S, Jo H, Harrison DG (2003) Role of xanthine oxidoreductase and NAD(P) H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am J Physiol Heart Circ Physiol 285:H2290–H2297
    CAS PubMed Google Scholar
  18. Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, Karwande SV, Stringham JC, Bull DA, Gleich M, Kennedy TP, Hoidal JR (2006) Transforming growth factor-β1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 290:L661–L673
    CAS PubMed Google Scholar
  19. Waghray M, Cui Z, Horowitz JC, Subramanian IM, Martinez FJ, Toews GB, Thannickal VJ (2005) Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. FASEB J 19:854–856
    CAS PubMed Google Scholar
  20. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87:1620–1624
    CAS PubMed PubMed Central Google Scholar
  21. Okamura DM, Lopez-Guisa JM, Koelsch K, Collins S, Eddy AA (2007) Atherogenic scavenger receptor modulation in the tubulointerstitium in response to chronic renal injury. Am J Physiol Renal Physiol 293:F575–F585
    CAS PubMed Google Scholar
  22. Malle E, Woenckhaus C, Waeg G, Esterbauer H, Grone EF, Grone HJ (1997) Immunological evidence for hypochlorite-modified proteins in human kidney. Am J Pathol 150:603–615
    CAS PubMed PubMed Central Google Scholar
  23. Djamali A, Vidyasagar A, Adulla M, Hullett D, Reese S (2009) Nox-2 is a modulator of fibrogenesis in kidney allografts. Am J Transplant 9:74–82
    CAS PubMed Google Scholar
  24. Himmelfarb J, McMenamin ME, Loseto G, Heinecke JW (2001) Myeloperoxidase-catalyzed 3-chlorotyrosine formation in dialysis patients. Free Radic Biol Med 31:1163–1169
    CAS PubMed Google Scholar
  25. Ito K, Chen J, Seshan SV, Khodadadian JJ, Gallagher R, El Chaar M, Vaughan ED Jr, Poppas DP, Felsen D (2005) Dietary arginine supplementation attenuates renal damage after relief of unilateral ureteral obstruction in rats. Kidney Int 68:515–528
    CAS PubMed Google Scholar
  26. Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, van der Vliet A (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393–397
    CAS PubMed Google Scholar
  27. Wang Z, Nicholls SJ, Rodriguez ER, Kummu O, Horkko S, Barnard J, Reynolds WF, Topol EJ, DiDonato JA, Hazen SL (2007) Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat Med 13:1176–1184
    CAS PubMed Google Scholar
  28. Kalantar-Zadeh K, Brennan ML, Hazen SL (2006) Serum myeloperoxidase and mortality in maintenance hemodialysis patients. Am J Kidney Dis 48:59–68
    CAS PubMed Google Scholar
  29. Matthijsen RA, Huugen D, Hoebers NT, de Vries B, Peutz-Kootstra CJ, Aratani Y, Daha MR, Tervaert JW, Buurman WA, Heeringa P (2007) Myeloperoxidase is critically involved in the induction of organ damage after renal ischemia reperfusion. Am J Pathol 171:1743–1752
    CAS PubMed PubMed Central Google Scholar
  30. Porubsky S, Schmid H, Bonrouhi M, Kretzler M, Malle E, Nelson PJ, Grone HJ (2004) Influence of native and hypochlorite-modified low-density lipoprotein on gene expression in human proximal tubular epithelium. Am J Pathol 164:2175–2187
    CAS PubMed PubMed Central Google Scholar
  31. Ghezzi P, Bonetto V, Fratelli M (2005) Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulation. Antioxid Redox Signal 7:964–972
    CAS PubMed Google Scholar
  32. Hamdane D, Kiger L, Dewilde S, Green BN, Pesce A, Uzan J, Burmester T, Hankeln T, Bolognesi M, Moens L, Marden MC (2003) The redox state of the cell regulates the ligand binding affinity of human neuroglobin and cytoglobin. J Biol Chem 278:51713–51721
    CAS PubMed Google Scholar
  33. Jordan PA, Gibbins JM (2006) Extracellular disulfide exchange and the regulation of cellular function. Antioxid Redox Signal 8:312–324
    CAS PubMed Google Scholar
  34. Kerblat I, Drouet C, Chesne S, Marche PN (1999) Importance of thioredoxin in the proteolysis of an immunoglobulin G as antigen by lysosomal Cys-proteases. Immunology 97:62–68
    CAS PubMed PubMed Central Google Scholar
  35. Reeves JP, Bailey CA, Hale CC (1986) Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. J Biol Chem 261:4948–4955
    CAS PubMed Google Scholar
  36. Yang J, Chen H, Vlahov IR, Cheng JX, Low PS (2006) Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging. Proc Natl Acad Sci U S A 103:13872–13877
    CAS PubMed PubMed Central Google Scholar
  37. den Hertog J, Groen A, van der Wijk T (2005) Redox regulation of protein-tyrosine phosphatases. Arch Biochem Biophys 434:11–15
    Google Scholar
  38. Groen A, Lemeer S, van der Wijk T, Overvoorde J, Heck AJ, Ostman A, Barford D, Slijper M, den Hertog J (2005) Differential oxidation of protein-tyrosine phosphatases. J Biol Chem 280:10298–10304
    CAS PubMed Google Scholar
  39. Kemp M, Go YM, Jones DP (2008) Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 44:921–937
    CAS PubMed Google Scholar
  40. Scholze A, Rinder C, Beige J, Riezler R, Zidek W, Tepel M (2004) Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure. Circulation 109:369–374
    CAS PubMed Google Scholar
  41. Van Remmen H, Salvador C, Yang H, Huang TT, Epstein CJ, Richardson A (1999) Characterization of the antioxidant status of the heterozygous manganese superoxide dismutase knockout mouse. Arch Biochem Biophys 363:91–97
    PubMed Google Scholar
  42. Folz RJ, Guan J, Seldin MF, Oury TD, Enghild JJ, Crapo JD (1997) Mouse extracellular superoxide dismutase: primary structure, tissue-specific gene expression, chromosomal localization, and lung in situ hybridization. Am J Respir Cell Mol Biol 17:393–403
    CAS PubMed Google Scholar
  43. Asaba K, Tojo A, Onozato ML, Goto A, Fujita T (2007) Double-edged action of SOD mimetic in diabetic nephropathy. J Cardiovasc Pharmacol 49:13–19
    CAS PubMed Google Scholar
  44. DeRubertis FR, Craven PA, Melhem MF, Salah EM (2004) Attenuation of renal injury in db/db mice overexpressing superoxide dismutase: evidence for reduced superoxide-nitric oxide interaction. Diabetes 53:762–768
    CAS PubMed Google Scholar
  45. McCullough PA, Li S, Jurkovitz CT, Stevens L, Collins AJ, Chen SC, Norris KC, McFarlane S, Johnson B, Shlipak MG, Obialo CI, Brown WW, Vassaloti J, Whaley-Connell AT, Brenner RM, Bakris GL (2008) Chronic kidney disease, prevalence of premature cardiovascular disease, and relationship to short-term mortality. Am Heart J 156:277–283
    PubMed Google Scholar
  46. Yamanobe T, Okada F, Iuchi Y, Onuma K, Tomita Y, Fujii J (2007) Deterioration of ischemia/reperfusion-induced acute renal failure in SOD1-deficient mice. Free Radic Res 41:200–207
    CAS PubMed Google Scholar
  47. Fukai T, Folz RJ, Landmesser U, Harrison DG (2002) Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc Res 55:239–249
    CAS PubMed Google Scholar
  48. Kliment CR, Tobolewski JM, Manni ML, Tan RJ, Enghild J, Oury TD (2008) Extracellular superoxide dismutase protects against matrix degradation of heparan sulfate in the lung. Antioxid Redox Signal 10:261–268
    CAS PubMed Google Scholar
  49. Petersen SV, Oury TD, Ostergaard L, Valnickova Z, Wegrzyn J, Thogersen IB, Jacobsen C, Bowler RP, Fattman CL, Crapo JD, Enghild JJ (2004) Extracellular superoxide dismutase (EC-SOD) binds to type I collagen and protects against oxidative fragmentation. J Biol Chem 279:13705–13710
    CAS PubMed Google Scholar
  50. Gongora MC, Lob HE, Landmesser U, Guzik TJ, Martin WD, Ozumi K, Wall SM, Wilson DS, Murthy N, Gravanis M, Fukai T, Harrison DG (2008) Loss of extracellular superoxide dismutase leads to acute lung damage in the presence of ambient air: a potential mechanism underlying adult respiratory distress syndrome. Am J Pathol 173:915–926
    CAS PubMed PubMed Central Google Scholar
  51. Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40
    CAS PubMed Google Scholar
  52. Oberley TD, Verwiebe E, Zhong W, Kang SW, Rhee SG (2001) Localization of the thioredoxin system in normal rat kidney. Free Radic Biol Med 30:412–424
    CAS PubMed Google Scholar
  53. Kobayashi M, Sugiyama H, Wang DH, Toda N, Maeshima Y, Yamasaki Y, Masuoka N, Yamada M, Kira S, Makino H (2005) Catalase deficiency renders remnant kidneys more susceptible to oxidant tissue injury and renal fibrosis in mice. Kidney Int 68:1018–1031
    CAS PubMed Google Scholar
  54. Sunami R, Sugiyama H, Wang DH, Kobayashi M, Maeshima Y, Yamasaki Y, Masuoka N, Ogawa N, Kira S, Makino H (2004) Acatalasemia sensitizes renal tubular epithelial cells to apoptosis and exacerbates renal fibrosis after unilateral ureteral obstruction. Am J Physiol Renal Physiol 286:F1030–F1038
    CAS PubMed Google Scholar
  55. Tarpey MM, Fridovich I (2001) Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res 89:224–236
    CAS PubMed Google Scholar
  56. Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286:R431–R444
    CAS PubMed Google Scholar
  57. Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43:995–1022
    CAS PubMed Google Scholar
  58. Pryor WA (1999) Oxidative stress status: OSS, BOSS, and "Wild Bill" Donovan. Free Radic Biol Med 27:1135–1136
    CAS PubMed Google Scholar
  59. de Zwart LL, Meerman JH, Commandeur JN, Vermeulen NP (1999) Biomarkers of free radical damage: applications in experimental animals and in humans. Free Radic Biol Med 26:202–226
    PubMed Google Scholar
  60. Ramos LF, Shintani A, Ikizler TA, Himmelfarb J (2008) Oxidative stress and inflammation are associated with adiposity in moderate to severe CKD. J Am Soc Nephrol 19:593–599
    CAS PubMed PubMed Central Google Scholar
  61. Himmelfarb J, McMonagle E, Freedman S, Klenzak J, McMenamin E, Le P, Pupim LB, Ikizler TA, the PICARD group (2004) Oxidative stress is increased in critically ill patients with acute renal failure. J Am Soc Nephrol 15:2449–2456
    CAS PubMed Google Scholar
  62. Baumann M, Caron M, Schmaderer C, Schulte C, Viklicky O, von Weyhern CW, Lutz J, Heemann U (2008) Renal N(epsilon)-carboxymethyllysine deposition after kidney transplantation. Transplantation 86:330–335
    CAS PubMed Google Scholar
  63. Coughlan MT, Mibus AL, Forbes JM (2008) Oxidative stress and advanced glycation in diabetic nephropathy. Ann N Y Acad Sci 1126:190–193
    CAS PubMed Google Scholar
  64. Coskun C, Kural A, Doventas Y, Koldas M, Ozturk H, Inal BB, Gumus A (2007) Hemodialysis and protein oxidation products. Ann N Y Acad Sci 1100:404–408
    CAS PubMed Google Scholar
  65. Nakayama M, Nakayama K, Zhu WJ, Shirota Y, Terawaki H, Sato T, Kohno M, Ito S (2008) Polymorphonuclear leukocyte injury by methylglyoxal and hydrogen peroxide: a possible pathological role for enhanced oxidative stress in chronic kidney disease. Nephrol Dial Transplant 23:3096–3102
    CAS PubMed Google Scholar
  66. Orhan H, van Holland B, Krab B, Moeken J, Vermeulen NP, Hollander P, Meerman JH (2004) Evaluation of a multi-parameter biomarker set for oxidative damage in man: increased urinary excretion of lipid, protein and DNA oxidation products after one hour of exercise. Free Radic Res 38:1269–1279
    CAS PubMed Google Scholar
  67. Stenvinkel P (2001) Malnutrition and chronic inflammation as risk factors for cardiovascular disease in chronic renal failure. Blood Purif 19:143–151
    CAS PubMed Google Scholar
  68. Arici M, Walls J (2001) End-stage renal disease, atherosclerosis, and cardiovascular mortality: is C-reactive protein the missing link? Kidney Int 59:407–414
    CAS PubMed Google Scholar
  69. Chertow GM, Soroko SH, Paganini EP, Cho KC, Himmelfarb J, Ikizler TA, Mehta RL (2006) Mortality after acute renal failure: models for prognostic stratification and risk adjustment. Kidney Int 70:1120–1126
    CAS PubMed Google Scholar
  70. Ikizler TA, Wingard RL, Harvell J, Shyr Y, Hakim RM (1999) Association of morbidity with markers of nutrition and inflammation in chronic hemodialysis patients: a prospective study. Kidney Int 55:1945–1951
    CAS PubMed Google Scholar
  71. Stenvinkel P, Barany P, Heimburger O, Pecoits-Filho R, Lindholm B (2002) Mortality, malnutrition, and atherosclerosis in ESRD: what is the role of interleukin-6? Kidney Int Suppl 80:S103–S108
    CAS Google Scholar
  72. Lindholm B, Heimburger O, Stenvinkel P (2002) What are the causes of protein-energy malnutrition in chronic renal insufficiency? Am J Kidney Dis 39:422–425
    PubMed Google Scholar
  73. Pecoits-Filho R, Barany P, Lindholm B, Heimburger O, Stenvinkel P (2002) Interleukin-6 is an independent predictor of mortality in patients starting dialysis treatment. Nephrol Dial Transplant 17:1684–1688
    CAS PubMed Google Scholar
  74. Chawla LS, Seneff MG, Nelson DR, Williams M, Levy H, Kimmel PL, Macias WL (2007) Elevated plasma concentrations of IL-6 and elevated APACHE II score predict acute kidney injury in patients with severe sepsis. Clin J Am Soc Nephrol 2:22–30
    CAS PubMed Google Scholar
  75. Kimmel PL, Phillips TM, Simmens SJ, Peterson RA, Weihs KL, Alleyne S, Cruz I, Yanovski JA, Veis JH (1998) Immunologic function and survival in hemodialysis patients. Kidney Int 54:236–244
    CAS PubMed PubMed Central Google Scholar
  76. Bologa RM, Levine DM, Parker TS, Cheigh JS, Serur D, Stenzel KH, Rubin AL (1998) Interleukin-6 predicts hypoalbuminemia, hypocholesterolemia, and mortality in hemodialysis patients. Am J Kidney Dis 32:107–114
    CAS PubMed Google Scholar
  77. Jung HH, Choi DH, Lee SH (2004) Serum malondialdehyde and coronary artery disease in hemodialysis patients. Am J Nephrol 24:537–542
    CAS PubMed Google Scholar
  78. Handelman GJ, Walter MF, Adhikarla R, Gross J, Dallal GE, Levin NW, Blumberg JB (2001) Elevated plasma F2-isoprostanes in patients on long-term hemodialysis. Kidney Int 59:1960–1966
    CAS PubMed Google Scholar
  79. Ikizler TA, Morrow JD, Roberts LJ, Evanson JA, Becker B, Hakim RM, Shyr Y, Himmelfarb J (2002) Plasma F2-isoprostane levels are elevated in chronic hemodialysis patients. Clin Nephrol 58:190–197
    CAS PubMed Google Scholar
  80. Anilkumar N, Weber R, Zhang M, Brewer A, Shah AM (2008) Nox4 and nox2 NADPH oxidases mediate distinct cellular redox signaling responses to agonist stimulation. Arterioscler Thromb Vasc Biol 28:1347–1354
    CAS PubMed Google Scholar
  81. Schappi MG, Jaquet V, Belli DC, Krause KH (2008) Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase. Semin Immunopathol 30:255–271
    PubMed Google Scholar
  82. Zhang WJ, Wei H, Frei B (2008) Genetic deficiency of NADPH oxidase does not diminish, but rather enhances, LPS-induced acute inflammatory responses in vivo. Free Radic Biol Med 46:791–798
    PubMed PubMed Central Google Scholar
  83. Liu RM (2008) Oxidative stress, plasminogen activator inhibitor 1, and lung fibrosis. Antioxid Redox Signal 10:303–319
    CAS PubMed Google Scholar
  84. Vayalil PK, Iles KE, Choi J, Yi AK, Postlethwait EM, Liu RM (2007) Glutathione suppresses TGF-β-induced PAI-1 expression by inhibiting p38 and JNK MAPK and the binding of AP-1, SP-1, and Smad to the PAI-1 promoter. Am J Physiol Lung Cell Mol Physiol 293:L1281–L1292
    CAS PubMed Google Scholar
  85. Vayalil PK, Olman M, Murphy-Ullrich JE, Postlethwait EM, Liu RM (2005) Glutathione restores collagen degradation in TGF-β-treated fibroblasts by blocking plasminogen activator inhibitor-1 expression and activating plasminogen. Am J Physiol Lung Cell Mol Physiol 289:L937–L945
    CAS PubMed Google Scholar
  86. Landray MJ, Wheeler DC, Lip GY, Newman DJ, Blann AD, McGlynn FJ, Ball S, Townend JN, Baigent C (2004) Inflammation, endothelial dysfunction, and platelet activation in patients with chronic kidney disease: the chronic renal impairment in Birmingham (CRIB) study. Am J Kidney Dis 43:244–253
    CAS PubMed Google Scholar
  87. Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, Himmelfarb J (2004) Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int 65:1009–1016
    PubMed Google Scholar
  88. Shlipak MG, Fried LF, Crump C, Bleyer AJ, Manolio TA, Tracy RP, Furberg CD, Psaty BM (2003) Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. Circulation 107:87–92
    CAS PubMed Google Scholar
  89. Annuk M, Zilmer M, Lind L, Linde T, Fellstrom B (2001) Oxidative stress and endothelial function in chronic renal failure. J Am Soc Nephrol 12:2747–2752
    CAS PubMed Google Scholar
  90. Bolton CH, Downs LG, Victory JG, Dwight JF, Tomson CR, Mackness MI, Pinkney JH (2001) Endothelial dysfunction in chronic renal failure: roles of lipoprotein oxidation and pro-inflammatory cytokines. Nephrol Dial Transplant 16:1189–1197
    CAS PubMed Google Scholar
  91. Mezzano D, Pais EO, Aranda E, Panes O, Downey P, Ortiz M, Tagle R, Gonzalez F, Quiroga T, Caceres MS, Leighton F, Pereira J (2001) Inflammation, not hyperhomocysteinemia, is related to oxidative stress and hemostatic and endothelial dysfunction in uremia. Kidney Int 60:1844–1850
    CAS PubMed Google Scholar
  92. Descamps-Latscha B, Witko-Sarsat V (2001) Importance of oxidatively modified proteins in chronic renal failure. Kidney Int Suppl 78:S108–S113
    CAS PubMed Google Scholar
  93. Simmons EM, Langone A, Sezer MT, Vella JP, Recupero P, Morrow JD, Ikizler TA, Himmelfarb J (2005) Effect of renal transplantation on biomarkers of inflammation and oxidative stress in end-stage renal disease patients. Transplantation 79:914–919
    CAS PubMed Google Scholar
  94. Wilson SK (1990) Role of oxygen-derived free radicals in acute angiotensin II-induced hypertensive vascular disease in the rat. Circ Res 66:722–734
    CAS PubMed Google Scholar
  95. Thomas M, Gavrila D, McCormick ML, Miller FJ Jr, Daugherty A, Cassis LA, Dellsperger KC, Weintraub NL (2006) Deletion of p47phox attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Circulation 114:404–413
    CAS PubMed PubMed Central Google Scholar
  96. Matsuno K, Yamada H, Iwata K, Jin D, Katsuyama M, Matsuki M, Takai S, Yamanishi K, Miyazaki M, Matsubara H, Yabe-Nishimura C (2005) Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation 112:2677–2685
    CAS PubMed Google Scholar
  97. Sugiyama H, Kobayashi M, Wang DH, Sunami R, Maeshima Y, Yamasaki Y, Masuoka N, Kira S, Makino H (2005) Telmisartan inhibits both oxidative stress and renal fibrosis after unilateral ureteral obstruction in acatalasemic mice. Nephrol Dial Transplant 20:2670–2680
    CAS PubMed Google Scholar
  98. Fujimoto S, Satoh M, Horike H, Hatta H, Haruna Y, Kobayashi S, Namikoshi T, Arakawa S, Tomita N, Kashihara N (2008) Olmesartan ameliorates progressive glomerular injury in subtotal nephrectomized rats through suppression of superoxide production. Hypertens Res 31:305–313
    CAS PubMed Google Scholar
  99. Liu XP, Pang YJ, Zhu WW, Zhao TT, Zheng M, Wang YB, Sun ZJ, Sun SJ (2009) Benazepril, an angiotensin-converting enzyme inhibitor, alleviates renal injury in spontaneously hypertensive rats by inhibiting advanced glycation end-product-mediated pathways. Clin Exp Pharmacol Physiol 36:287–296
    CAS PubMed Google Scholar
  100. Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, Conti S, Rottoli D, Longaretti L, Cassis P, Morigi M, Coffman TM, Remuzzi G (2009) Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest 119:524–530
    CAS PubMed PubMed Central Google Scholar
  101. Fliser D, Wagner KK, Loos A, Tsikas D, Haller H (2005) Chronic angiotensin II receptor blockade reduces (intra)renal vascular resistance in patients with type 2 diabetes. J Am Soc Nephrol 16:1135–1140
    CAS PubMed Google Scholar
  102. Aslam S, Santha T, Leone A, Wilcox C (2006) Effects of amlodipine and valsartan on oxidative stress and plasma methylarginines in end-stage renal disease patients on hemodialysis. Kidney Int 70:2109–2115
    CAS PubMed Google Scholar
  103. Argani H, Ghorbanihaghjo A, Aghaeishahsavari M, Noroozianavval M, Rashtchizadeh N, Veisi P, Safa J, Abediazar S (2008) Effects of losartan and enalapril on high-sensitivity C-reactive protein and total antioxidant in renal transplant recipients with renin–angiotensin system polymorphisms. Transplant Proc 40:16–21
    CAS PubMed Google Scholar
  104. Moore KJ, Freeman MW (2006) Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol 26:1702–1711
    CAS PubMed Google Scholar
  105. Febbraio M, Hajjar DP, Silverstein RL (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 108:785–791
    CAS PubMed PubMed Central Google Scholar
  106. Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Andersson L, Koehn S, Rhee JS, Silverstein R, Hoff HF, Freeman MW (2002) Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 277:49982–49988
    CAS PubMed Google Scholar
  107. Babaev VR, Gleaves LA, Carter KJ, Suzuki H, Kodama T, Fazio S, Linton MF (2000) Reduced atherosclerotic lesions in mice deficient for total or macrophage-specific expression of scavenger receptor-A. Arterioscler Thromb Vasc Biol 20:2593–2599
    CAS PubMed Google Scholar
  108. Okamura DM, Pennathur S, Pasichnyk K, Lopez-Guisa JM, Collins S, Febbraio M, Heinecke J, Eddy AA (2009) CD36 regulates oxidative stress and inflammation in hypercholesterolemic chronic kidney disease. J Am Soc Nephrol 20:495–505
    CAS PubMed PubMed Central Google Scholar
  109. Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF, Sharma K, Silverstein RL (2000) Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 105:1049–1056
    CAS PubMed PubMed Central Google Scholar
  110. Manning-Tobin JJ, Moore KJ, Seimon TA, Bell SA, Sharuk M, Alvarez-Leite JI, de Winther MP, Tabas I, Freeman MW (2009) Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler Thromb Vasc Biol 29:19–26
    CAS PubMed Google Scholar
  111. Beamer CA, Holian A (2005) Scavenger receptor class A type I/II (CD204) null mice fail to develop fibrosis following silica exposure. Am J Physiol Lung Cell Mol Physiol 289:L186–L195
    CAS PubMed Google Scholar
  112. IUPAC-IUB Commission on Biochemical Nomenclature (CBN) (1974) Nomenclature of tocopherols and related compounds. Recommendations (1973). Eur J Biochem 46:217–219
    Google Scholar
  113. Atkinson J, Epand RF, Epand RM (2008) Tocopherols and tocotrienols in membranes: a critical review. Free Radic Biol Med 44:739–764
    CAS PubMed Google Scholar
  114. Boscoboinik D, Szewczyk A, Hensey C, Azzi A (1991) Inhibition of cell proliferation by alpha-tocopherol. Role of protein kinase C. J Biol Chem 266:6188–6194
    CAS PubMed Google Scholar
  115. Brigelius-Flohe R (2009) Vitamin E: the shrew waiting to be tamed. Free Radic Biol Med 46:543–554
    CAS PubMed Google Scholar
  116. Hensley K, Benaksas EJ, Bolli R, Comp P, Grammas P, Hamdheydari L, Mou S, Pye QN, Stoddard MF, Wallis G, Williamson KS, West M, Wechter WJ, Floyd RA (2004) New perspectives on vitamin E: gamma-tocopherol and carboxyelthylhydroxychroman metabolites in biology and medicine. Free Radic Biol Med 36:1–15
    CAS PubMed Google Scholar
  117. Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ (2003) Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 361:2017–2023
    CAS PubMed Google Scholar
  118. Gordon CA, Himmelfarb J (2004) Antioxidant therapy in uremia: evidence-based medicine? Semin Dial 17:327–332
    PubMed Google Scholar
  119. Boaz M, Smetana S, Weinstein T, Matas Z, Gafter U, Iaina A, Knecht A, Weissgarten Y, Brunner D, Fainaru M, Green MS (2000) Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet 356:1213–1218
    CAS PubMed Google Scholar
  120. Himmelfarb J, Kane J, McMonagle E, Zaltas E, Bobzin S, Boddupalli S, Phinney S, Miller G (2003) Alpha and gamma tocopherol metabolism in healthy subjects and patients with end-stage renal disease. Kidney Int 64:978–991
    CAS PubMed Google Scholar
  121. Tepel M, van der Giet M, Statz M, Jankowski J, Zidek W (2003) The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure: a randomized, controlled trial. Circulation 107:992–995
    CAS PubMed Google Scholar
  122. Witko-Sarsat V, Gausson V, Nguyen AT, Touam M, Drueke T, Santangelo F, Descamps-Latscha B (2003) AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patients. Kidney Int 64:82–91
    CAS PubMed Google Scholar
  123. Adabag AS, Ishani A, Bloomfield HE, Ngo AK, Wilt TJ (2009) Efficacy of N-acetylcysteine in preventing renal injury after heart surgery: a systematic review of randomized trials. Eur Heart J doi:10.1093/eurheartj/ehp053
    CAS PubMed PubMed Central Google Scholar
  124. Huang KC, Yang CC, Lee KT, Chien CT (2003) Reduced hemodialysis-induced oxidative stress in end-stage renal disease patients by electrolyzed reduced water. Kidney Int 64:704–714
    CAS PubMed Google Scholar

Download references