An update on viral association of human cancers (original) (raw)
Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–1869 ArticlePubMedCAS Google Scholar
Schalling M, Ekman M, Kaaya EE, Linde A, Biberfeld P (1995) A role for a new herpes virus (KSHV) in different forms of Kaposi’s sarcoma. Nat Med 1:707–708 ArticlePubMedCAS Google Scholar
Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332:1186–1191 ArticlePubMedCAS Google Scholar
Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human merkel cell carcinoma. Science 319:1096–1100 ArticlePubMedCAS Google Scholar
Rous P (1911) A Sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med 13:397–411 ArticlePubMedCAS Google Scholar
Zheng ZM (2010) Viral oncogenes, noncoding RNAs, and RNA splicing in human tumor viruses. Int J Biol Sci 6:730–755 ArticlePubMedCAS Google Scholar
Stolt A, Sasnauskas K, Koskela P, Lehtinen M, Dillner J (2003) Seroepidemiology of the human polyomaviruses. J Gen Virol 84:1499–1504 ArticlePubMedCAS Google Scholar
Barbanti-Brodano G, Sabbioni S, Martini F, Negrini M, Corallini A, Tognon M (2006) BK virus, JC virus and Simian Virus 40 infection in humans, and association with human tumors. Adv Exp Med Biol 577:319–341 ArticlePubMedCAS Google Scholar
zur Hausen H (2008) Novel human polyomaviruses—Re-emergence of a well known virus family as possible human carcinogens. Int J Cancer 123:247–250 ArticlePubMedCAS Google Scholar
Allander T, Andreasson K, Gupta S, Bjerkner A, Bogdanovic G, Persson MAA, Dalianis T, Ramqvist T, Andersson B (2007) Identification of a third human polyomavirus. J Virol 81:4130–4136 ArticlePubMedCAS Google Scholar
Gaynor AM, Nissen MD, Whiley DM, Mackay IM, Lambert SB et al (2007) Identification of a novel polyomavirus from patients with acute respiratory tract infections. Plos Pathog 3:595–604 ArticleCAS Google Scholar
Helmbold P, Lahtz C, Enk A, Herrmann-Trost P, Marsch WCh, Kutzner H, Dammann RH (2009) Frequent occurrence of RASSF1A promoter hypermethylation and Merkel cell polyomavirus in Merkel cell carcinoma. Mol Carcinog 48:903–909 ArticlePubMedCAS Google Scholar
Sastre-Garau X, Peter M, Avril MF, Laude H, Couturier J, Rozenberg F, Almeida A, Boitier F, Carlotti A, Couturaud B, Dupin N (2009) Merkel cell carcinoma of the skin: pathological and molecular evidence for a causative role of MCV in oncogenesis. J Pathol 218:48–56 ArticlePubMedCAS Google Scholar
de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H (2004) Classification of papillomaviruses. Virology 324:17–27 ArticlePubMed Google Scholar
Lo EJ, Bell D, Woo JS, Li G, Hanna EY, El-Naggar AK, Sturgis EM (2010) Human papillomavirus and WHO type I nasopharyngeal carcinoma. Laryngoscope 120:1990–1997 ArticlePubMed Google Scholar
Laantri N, Attaleb M, Kandil M, Naji F, Mouttaki T, Dardari R, Belghmi K, Benchakroun N, El Mzibri M, Khyatti M (2011) Human papillomavirus detection in moroccan patients with nasopharyngeal carcinoma. Infect Agent Cancer 6:3 ArticlePubMed Google Scholar
Huang CC, Hsiao JR, Yang MW, Wu YH, Hsu KF, Chang Y, Chen CW, Tsai ST, Wei HP, Jin YT (2011) Human papilloma virus detection in neoplastic and non-neoplastic nasopharyngeal tissues in Taiwan. J Clin Pathol 64:571–577 ArticlePubMed Google Scholar
Chen TH, Huang CC, Yeh KT, Chang SH, Chang SW, Sung WW, Cheng YW, Lee H (2012) Human papilloma virus 16 E6 oncoprotein associated with p53 inactivation in colorectal cancer. World J Gastroenterol 18:4051–4058 ArticlePubMedCAS Google Scholar
Vousden KH, Jat PS (1989) Functional similarity between HPV16E7, SV40 large T and adenovirus E1a proteins. Oncogene 4:153–158 PubMedCAS Google Scholar
Liu X, Clements A, Zhao K, Marmorstein R (2006) Structure of the human papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor. J Biol Chem 281:578–586 ArticlePubMedCAS Google Scholar
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90 ArticlePubMed Google Scholar
Perz JF, Armstrong GL, Farrington LA et al (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45:529–538 ArticlePubMed Google Scholar
Bouchard MJ, Schneider RJ (2004) The enigmatic X gene of hepatitis B virus. J Virol 78:12725–12734 ArticlePubMedCAS Google Scholar
Yen CJ, Lin YJ, Yen CS, Tsai HW, Tsai TF, Chang KY, Huang WC, Lin PW, Chiang CW, Chang TT (2012) Hepatitis B Virus X Protein Upregulates mTOR signaling through IKKβ to increase cell proliferation and VEGF production in hepatocellular carcinoma. PLoS One 7(7):e41931 ArticlePubMedCAS Google Scholar
Diao J, Garces R, Richardson CD (2001) X protein of hepatitis B virus modulates Cytokine and growth factor related signal transduction pathways during the course of viral infections and hepatocarcinogenesis. Cytokine Growth Factor Rev 12:189–205 ArticlePubMedCAS Google Scholar
Kuzhandaivelu N, Cong YS, Inouye C, Yang WM, Seto E (1996) XAP2, a novel hepatitis B virus X-associated protein that inhibits X transactivation. Nucleic Acids Res 24:4741–4750 ArticlePubMedCAS Google Scholar
Kashuba E, Kashuba V, Pokrovskaja K, Klein G, Szekely L (2000) Epstein–Barr virus encoded nuclear protein EBNA-3 binds XAP-2, a protein associated with Hepatitis B virus X antigen. Oncogene 19:1801–1806 ArticlePubMedCAS Google Scholar
Liu J, Lian Z, Han S et al (2006) De-regulation of E-Cadherin by hepatitis B virus × antigen in hepatocellular carcinoma. Oncogene 16:1008–1017 Article Google Scholar
Zhang X, Dong N, Zhang H et al (2005) Effects of hepatitis B virus X protein on human telomerase reverse transcriptase expression and activity in hepatoma cells. J Lab Clin Med 145:96–104 Article Google Scholar
Poussin K, Dienes H, Sirma H et al (1999) Expression of mutated Hepatitis B virus X genes in human hepatocellular carcinomas. Int J Cancer 192:111–118 Google Scholar
Wang Y, Lau SH, Sham JST et al (2004) Characterization of HBV integrants in 14 hepatocellular carcinomas: association of truncated x gene and hepatocellular carcinogenesis. Oncogene 23:142–148 ArticlePubMedCAS Google Scholar
Sze KM, Chu GK, Lee JM, Ng IO (2012) C-terminal truncated hepatitis B virus x protein is associated with metastasis and enhances invasiveness by c-jun/matrix metalloproteinase protein 10 activation in hepatocellular carcinoma. Hepatology 57:131–139 Google Scholar
Wang C, Yang W, Yan HX, Luo T, Zhang J, Tang L, Wu FQ, Zhang HL, Yu LX, Zheng LY, Li YQ, Dong W, He YQ, Liu Q, Zou SS, Lin Y, Hu L, Li Z, Wu MC, Wang HY (2012) Hepatitis B virus X (HBx) induces tumorigenicity of hepatic progenitor cells in 3,5-diethoxycarbonyl-1,4-dihydrocollidine-treated HBx transgenic mice. Hepatology 55:108–120 ArticlePubMedCAS Google Scholar
Liang TJ, Heller T (2004) Pathogenesis of hepatitis C-associated hepatocellular carcinoma. Gastroenterology 127:S62–S71 ArticlePubMedCAS Google Scholar
Jopling CL, Yi M, Lancaster AM et al (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309:1577–1581 ArticlePubMedCAS Google Scholar
Zhong J, Gastaminza P, Chung J, Stamataki Z, Isogawa M, Cheng G, McKeating JA, Chisari FV (2006) Persistent hepatitis C virus infection in vitro: coevolution of virus and host. J. Virol. 80:11082–11093 ArticlePubMedCAS Google Scholar
Cai X, Schafer A, Lu S, Bilello JP, Desrosiers RC, Edwards R, Raab-Traub N, Cullen BR (2006) Epstein–Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2:e23 ArticlePubMed Google Scholar
Grundhoff A, Sullivan CS, Ganem D (2006) A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12:733–750 ArticlePubMedCAS Google Scholar
Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304:734–736 ArticlePubMedCAS Google Scholar
Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR (2005) Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA 102:5570–5575 ArticlePubMedCAS Google Scholar
Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276 ArticlePubMedCAS Google Scholar
Samols MA, Hu J, Skalsky RL, Renne R (2005) Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus. J Virol 79:9301–9305 ArticlePubMedCAS Google Scholar
Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966 ArticlePubMedCAS Google Scholar
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432:231–235 ArticlePubMedCAS Google Scholar
Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N et al (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240 ArticlePubMedCAS Google Scholar
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419 ArticlePubMedCAS Google Scholar
Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901 ArticlePubMedCAS Google Scholar
Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98 ArticlePubMedCAS Google Scholar
Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838 ArticlePubMedCAS Google Scholar
Salzman DW, Shubert-Coleman J, Furneaux H (2007) P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is required for let-7-directed silencing of gene expression. J Biol Chem 282:32773–32779 ArticlePubMedCAS Google Scholar
Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216 ArticlePubMedCAS Google Scholar
Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208 ArticlePubMedCAS Google Scholar
Skalsky RL, Samols MA, Karlie B, Plaisance KB, Boss IW, Riva A, Lopez MC, Baker HV, Renne R (2007) Kaposi’s Sarcoma-Associated Herpesvirus Encodes an Ortholog of miR-155. J Virol 81:12836–12845 ArticlePubMedCAS Google Scholar
Louafi F, Martinez-Nunez RT, Sanchez-Elsner T (2010) MicroRNA-155 targets SMAD2and modulates the response of macrophages to transforming growth factor-{beta}. J Biol Chem 285:41328–41336 ArticlePubMedCAS Google Scholar
Rai D, Kim SW, McKeller MR, Dahia PL, Aguiar RC (2010) Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis. Proc Natl Acad Sci USA 107:3111–3116 ArticlePubMedCAS Google Scholar
Yin Q et al (2008) MicroRNA-155 is an Epstein–Barr virus-induced gene that modulates Epstein–Barr virus-regulated gene expression pathways. J Virol 82:5295–5306 ArticlePubMedCAS Google Scholar
Yin Q et al (2010) MicroRNA miR-155 inhibits bone morphogenetic protein (BMP) signaling and BMP-mediated Epstein–Barr virus reactivation. J Virol 84:6318–6327 ArticlePubMedCAS Google Scholar
Liu Y et al (2012) Kaposi’s Sarcoma-Associated Herpesvirus-Encoded MicroRNA miR-K12-11 Attenuates Transforming Growth Factor Beta Signaling through Suppression of SMAD5. J Virol 86:1372 ArticlePubMedCAS Google Scholar
Cahir-McFarland ED, Davidson DM, Schauer SL, Duong J, Kieff E (2000) NF-kappa B inhibition causes spontaneous apoptosis in Epstein–Barr virus-transformed lymphoblastoid cells. Proc Natl Acad Sci USA 97:6055–6060 ArticlePubMedCAS Google Scholar
Allday MJ (2009) How does Epstein–Barr virus (EBV) complement the activation of Myc in the pathogenesis of Burkitt’s lymphoma? Semin Cancer Biol 19:366–376 ArticlePubMedCAS Google Scholar
Chen J, Fu L, Zhang LY, Kwong DL, Yan L, Guan XY (2012) Tumor suppressor genes on frequently deleted chromosome 3p in nasopharyngeal carcinoma. Chin J Cancer 31:215–222 ArticlePubMedCAS Google Scholar
Lo KW, Kwong J, Hui AB, Chan SY, To KF, Chan AS, Chow LS, Teo PM, Johnson PJ, Huang DP (2001) High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer Res 61:3877–3881 PubMedCAS Google Scholar
Qiu GH, Tan LK, Loh KS, Lim CY, Srivastava G, Tsai ST, Tsao SW, Tao Q (2004) The candidate tumor suppressor gene BLU, located at the commonly deleted region 3p21.3, is an E2F-regulated, stress-responsive gene and inactivated by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma. Oncogene 23:4793–4806 ArticlePubMedCAS Google Scholar
Ying J, Li H, Seng TJ, Langford C, Srivastava G, Tsao SW, Putti T, Murray P, Chan AT, Tao Q (2006) Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene 25:1070–1080 ArticlePubMedCAS Google Scholar
Du C, Huang T, Sun D, Mo Y, Feng H, Zhou X, Xiao X, Yu N, Hou B, Huang G, Ernberg I, Zhang Z (2011) CDH4 as a novel putative tumor suppressor gene epigenetically silenced by promoter hypermethylation in nasopharyngeal carcinoma. Cancer Lett 309:54–61 ArticlePubMedCAS Google Scholar
Zhang X, Liu H, Li B, Huang P, Shao J, He Z (2012) Tumor suppressor BLU inhibits proliferation of nasopharyngeal carcinoma cells by regulation of cell cycle, c-Jun N-terminal kinase and the cyclin D1 promoter. BMC Cancer 12:267. doi:10.1186/1471-2407-12-267 ArticlePubMedCAS Google Scholar
Young LS, Dawson CW, Clark D, Rupani H, Busson P, Tursz T, Johnson A, Rickinson AB (1988) Epstein–Barr virus gene expression in nasopharyngeal carcinoma. J Gen Virol 69:1051–1065 ArticlePubMedCAS Google Scholar
Pathmanathan R, Prasad U et al (1995) Clonal proliferations of cells infected with Epstein–Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med 333:693–698 ArticlePubMedCAS Google Scholar
Pak MW, To KF et al (2002) Nasopharyngeal carcinoma in situ (NPCIS)—pathologic and clinical perspectives. Head Neck 24:989–995 ArticlePubMed Google Scholar
Cheung FM, Pang SW et al (2004) Nasopharyngeal intraepithelial lesion: latent Epstein–Barr virus infection with malignant potential. Histopathology 45:171–179 ArticlePubMedCAS Google Scholar
Chan AS, To KF et al (2000) High frequency of chromosome 3p deletion in histologically normal nasopharyngeal epithelia from southern Chinese. Cancer Res 60:5365–5370 PubMedCAS Google Scholar
Chan AS, To KF et al (2002) Frequent chromosome 9p losses in histologically normal nasopharyngeal epithelia from southern Chinese. Int J Cancer 102:300–303 ArticlePubMedCAS Google Scholar
Liu XQ, Chen HK et al (2003) Alterations of BLU, a candidate tumor suppressor gene on chromosome 3p21.3, in human nasopharyngeal carcinoma. Int J Cancer 106:60–65 ArticlePubMedCAS Google Scholar
Chow LS, Lo KW et al (2004) RASSF1A is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma. Int J Cancer 109:839–847 ArticlePubMedCAS Google Scholar
Raab-Traub N (2002) Epstein–Barr virus in the pathogenesis of NPC. Semin Cancer Biol 12(6):431–441 ArticlePubMedCAS Google Scholar
Hu L, Troyanovsky B, Zhang X, Trivedi P, Ernberg I, Klein G (2000) Differences in the immunogenicity of latent membrane protein 1(LMP1) encoded by Epstein–Barr virus genomes derived from LMP1-positive and -negative nasopharyngeal carcinoma. Cancer Res 60:5589–5593 PubMedCAS Google Scholar
Zhang X, Dawson CW, He Z, Huang P (2012) Immune evasion strategies of the human gamma-herpesviruses: implications for viral tumorigenesis. J Med Virol 84:272–281 ArticlePubMedCAS Google Scholar
Li HM, Zhuang ZH, Wang Q, Pang JC, Wang XH, Wong HL, Feng HC, Jin DY, Ling MT, Wong YC, Eliopoulos AG, Young LS, Huang DP, Tsao SW (2004) Epstein–Barr virus latent membrane protein 1 (LMP1) upregulates Id1 expression in nasopharyngeal epithelial cells. Oncogene 23:4488–4494 ArticlePubMedCAS Google Scholar
Lo AK et al (2010) Upregulation of Id1 by Epstein–Barr virus-encoded LMP1 confers resistance to TGFbeta-mediated growth inhibition. Mol Cancer 9:155 ArticlePubMed Google Scholar
Floettmann JE, Ward K, Rickinson AB, Rowe M (1996) Cytostatic effect of Epstein–Barr virus latent membrane protein-1 analyzed using tetracycline-regulated expression in B cell lines. Virology 223:29–40 ArticlePubMedCAS Google Scholar
Deng W, Pang PS, Tsang CM, Hau PM, Yip YL, Cheung ALM, Tsao SW (2012) Epstein–Barr virus-encoded latent membrane Protein 1 Impairs G2 checkpoint in human nasopharyngeal epithelial cells through defective Chk1 activation. PLoS ONE 7:e39095 ArticlePubMedCAS Google Scholar
Gruhne B, Kamranvar SA, Masucci MG, Sompallae R (2009) EBV and genomic instability—a new look at the role of the virus in the pathogenesis of Burkitt’s lymphoma. Sem Cancer Biol 19:394–400 ArticleCAS Google Scholar
Gruhne B, Sompallae R, Marescotti D, Kamranvar SA, Gastaldello S, Masucci MG (2009) The Epstein–Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc Natl Acad Sci USA 106:2313–2318 ArticlePubMedCAS Google Scholar
Kamranvar SA, Gruhne B, Szeles A, Masucci MG (2007) Epstein–Barr virus promotes genomic instability in Burkitt’s lymphoma. Oncogene 26:5115–5123 ArticlePubMedCAS Google Scholar
Li JH, Chia M, Shi W, Ngo D, Strathdee CA, Huang D, Klamut H, Liu FF (2002) Tumor-targeted gene therapy for nasopharyngeal carcinoma. Cancer Res 62:171–178 PubMedCAS Google Scholar
Zuo Y, Wu J, Xu Z, Yang S, Yan H, Tan L, Meng X, Ying X, Liu R, Kang T, Huang W (2011) Minicircle-oriP-IFNγ: a novel targeted gene therapeutic system for EBV positive human nasopharyngeal carcinoma. PLoS One. 6e19407
Carbone M, Klein G, Gruber J, Wong M (2004) Modern criteria to establish human cancer etiology. Cancer Res 64:5518–5524 ArticlePubMedCAS Google Scholar
zur Hausen H (2012) Red meat consumption and cancer: reasons to suspect involvement of bovine infectious factors in colorectal cancer. Int J Cancer 130:2475–2483 ArticlePubMedCAS Google Scholar