Ancient gene duplications and the root(s) of the tree of life (original) (raw)
SF Altschul TL Madden AA Shaffer J Zhang Z Zhang W Miller DJ Lipman (1997)ArticleTitleGapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic Acids Res25 3389–3402Occurrence Handle9254694Occurrence Handle10.1093/nar/25.17.3389Occurrence Handle1:CAS:528:DyaK2sXlvFyhu7w%3D ArticlePubMedCAS Google Scholar
L Aravind R Mazumder S Vasudevan EV Koonin (2002)ArticleTitleTrends in protein evolution inferred from sequence and structure analysis.Curr Opin Struct Biol12 392–399Occurrence Handle12127460Occurrence Handle10.1016/S0959-440X(02)00334-2Occurrence Handle1:CAS:528:DC%2BD38Xlt1Shs78%3D ArticlePubMedCAS Google Scholar
E Bapteste C Brochier (2004)ArticleTitleOn the conceptual difficulties in rooting the tree of life.Trends Microbiol12 9–13Occurrence Handle14700546Occurrence Handle1:CAS:528:DC%2BD3sXhtVWjtLnP PubMedCAS Google Scholar
H Brinkmann H Philippe (1999)ArticleTitleArchaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies.Mol Biol Evol16 817–825Occurrence Handle10368959Occurrence Handle1:CAS:528:DyaK1MXjslGitbk%3D PubMedCAS Google Scholar
JR Brown WF Doolittle (1995)ArticleTitleRoot of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications.Proc Natl Acad Sci USA92 2441–2445Occurrence Handle7708661Occurrence Handle1:CAS:528:DyaK2MXksl2ktbw%3D PubMedCAS Google Scholar
– Robb FT, Weiss R, Doolittle WF (1997) Evidence for the early divergence of tryptophanyl- and tyrosyl-tRNA synthetases. J Mol Evol 45: 9–16 Google Scholar
G Caetano-Anolles (2002)ArticleTitleEvolved RNA secondary structure and the rooting of the universal tree of life.J Mol Evol54 333–345Occurrence Handle11847559Occurrence Handle1:CAS:528:DC%2BD38XhsFKksrs%3D PubMedCAS Google Scholar
P Cammarano S Gribaldo A Johann (2002)ArticleTitleUpdating carbamoylphosphate synthase (CPS) phylogenies: occurrence and phylogenetic identity of archaeal CPS genes.J Mol Evol55 153–160Occurrence Handle12107592Occurrence Handle10.1007/s00239-002-2312-6Occurrence Handle1:CAS:528:DC%2BD38XmtFejtLk%3D ArticlePubMedCAS Google Scholar
RL Cann M Stoneking AC Wilson (1987)ArticleTitleMitochondrial DNA and human evolution.Nature325 31–36Occurrence Handle3025745Occurrence Handle10.1038/325031a0Occurrence Handle1:CAS:528:DyaL2sXpslagtQ%3D%3D ArticlePubMedCAS Google Scholar
T Cavalier-Smith (2002)ArticleTitleThe neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification.Int J Syst Evol Microbiol52 7–76Occurrence Handle11837318Occurrence Handle1:CAS:528:DC%2BD38XhsVWmtL4%3D PubMedCAS Google Scholar
RL Charlebois CW Sensen WF Doolittle JR Brown (1997)ArticleTitleEvolutionary analysis of the hisCGABdFDEHI gene cluster from the archaeon Sulfolobus solfataricus P2.J Bacteriol179 4429–4432Occurrence Handle9209067Occurrence Handle1:CAS:528:DyaK2sXkt1Klsb8%3D PubMedCAS Google Scholar
WF Doolittle (1998)ArticleTitleYou are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes.Trends Genet14 307–311Occurrence Handle9724962Occurrence Handle1:CAS:528:DyaK1cXlsValsbk%3D PubMedCAS Google Scholar
– (1999) Phylogenetic classification and the universal tree. Science 284: 2124–2129
A Drummond K Strimmer (2001)ArticleTitlePAL: an object-oriented programming library for molecular evolution and phylogenetics.Bioinformatics17 662–663Occurrence Handle11448888Occurrence Handle10.1093/bioinformatics/17.7.662Occurrence Handle1:CAS:528:DC%2BD3MXmtleltLw%3D ArticlePubMedCAS Google Scholar
RC Edgar (2004)ArticleTitleMUSCLE: multiple sequence alignment with high accuracy and high throughput.Nucleic Acids Res32 1792–1797Occurrence Handle15034147Occurrence Handle1:CAS:528:DC%2BD2cXisF2ks7w%3D PubMedCAS Google Scholar
TM Embley RP Hirt (1998)ArticleTitleEarly branching eukaryotes?Curr Opin Genet Dev8 624–629Occurrence Handle9914207Occurrence Handle10.1016/S0959-437X(98)80029-4Occurrence Handle1:CAS:528:DyaK1MXhs1yjtQ%3D%3D ArticlePubMedCAS Google Scholar
J Felsenstein (1978)ArticleTitleCases in which parsimony and compatibility methods will be positively misleading.Syst Zool27 401–410 Google Scholar
– (1993) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genetics, University of Washington, Seattle, Washington
DF Feng G Cho RF Doolittle (1997)ArticleTitleDetermining divergence times with a protein clock: update and reevaluation.Proc Natl Acad Sci USA94 13028–13033Occurrence Handle9371794Occurrence Handle1:CAS:528:DyaK2sXnvFamsL8%3D PubMedCAS Google Scholar
WM Fitch K Upper (1987)ArticleTitleThe phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code.Cold Spring Harb Symp Quant Biol52 759–767Occurrence Handle3454288Occurrence Handle1:CAS:528:DyaL1cXlt1Cmtrc%3D PubMedCAS Google Scholar
P Forterre H Philippe (1999)ArticleTitleWhere is the root of the universal tree of life?Bioessays21 871–879Occurrence Handle10497338Occurrence Handle10.1002/(SICI)1521-1878(199910)21:10<871::AID-BIES10>3.0.CO;2-QOccurrence Handle1:STN:280:DyaK1MvivVartA%3D%3D ArticlePubMedCAS Google Scholar
MY Galperin EV Koonin (1997)ArticleTitleA diverse superfamily of enzymes with ATP-dependent carboxylate- amine/thiol ligase activity.Protein Sci6 2639–2643Occurrence Handle9416615Occurrence Handle1:CAS:528:DyaK2sXotVWht7w%3DOccurrence Handle10.1002/pro.5560061218 ArticlePubMedCAS Google Scholar
JP Gogarten (1994)ArticleTitleWhich is the most conserved group of proteins? Homology-orthology, paralogy, xenology, and the fusion of independent lineages.J Mol Evol39 541–543Occurrence Handle7807544Occurrence Handle10.1007/BF00173425Occurrence Handle1:CAS:528:DyaK2MXhvF2hurs%3D ArticlePubMedCAS Google Scholar
– Kibak H, Dittrich P, Taiz L, Bowman EJ, Bowman BJ, Manoloson MF, Poole RJ, Date T, Oshima T, Konishi J, Denda K, Yoshida M (1989) Evolution of the vacuolar H+ -ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86: 6661–6665 Google Scholar
– Olendsenski L, Hilario E (1998) Gene duplications and horizontal transfer. In: Adams M, Weigel J (eds) Thermophiles: the key to molecular evolution and the origin of life? Taylor and Francis, London, pp 165–176
– Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19: 2226–2238 Google Scholar
S Gribaldo P Cammarano (1998)ArticleTitleThe root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein-targeting machinery.J Mol Evol47 508–516Occurrence Handle9797401Occurrence Handle1:CAS:528:DyaK1cXntFWhsL4%3D PubMedCAS Google Scholar
– Philippe H (2002) Ancient phylogenetic relationships. Theor Popul Biol 61: 391–408 Google Scholar
S Guindon O Gascuel (2003)ArticleTitleA simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.Syst Biol52 696–704Occurrence Handle14530136Occurrence Handle10.1080/10635150390235520 ArticlePubMed Google Scholar
RS Gupta (2001)ArticleTitleThe branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins.Int Microbiol4 187–202Occurrence Handle12051562Occurrence Handle10.1007/s10123-001-0037-9Occurrence Handle1:CAS:528:DC%2BD38XmtF2iu70%3D ArticlePubMedCAS Google Scholar
– Golding GB (1993) Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J Mol Evol 37: 573–582 Google Scholar
– Johari V (1998) Signature sequences in diverse proteins provide evidence of a close evolutionary relationship between the Deinococcus-Thermus group and cyanobacteria. J Mol Evol 46: 716–720 Google Scholar
H Hartman A Fedorov (2002)ArticleTitleThe origin of the eukaryotic cell: a genomic investigation.Proc Natl Acad Sci USA99 1420–1425Occurrence Handle11805300Occurrence Handle10.1073/pnas.032658599Occurrence Handle1:CAS:528:DC%2BD38Xht1ClsL4%3D ArticlePubMedCAS Google Scholar
K Henze W Martin (2001)ArticleTitleHow do mitochondrial genes get into the nucleus?Trends Genet17 383–387Occurrence Handle11418217Occurrence Handle10.1016/S0168-9525(01)02312-5Occurrence Handle1:CAS:528:DC%2BD3MXksVyntL0%3D ArticlePubMedCAS Google Scholar
E Hilario JP Gogarten (1993)ArticleTitleHorizontal transfer of ATPase genes – the tree of life becomes a net of life.Biosystems31 111–119Occurrence Handle8155843Occurrence Handle10.1016/0303-2647(93)90038-EOccurrence Handle1:CAS:528:DyaK2cXlvF2nu7o%3D ArticlePubMedCAS Google Scholar
JP Huelsenbeck F Ronquist (2001)ArticleTitleMRBAYES: Bayesian inference of phylogenetic trees.Bioinformatics17 754–755Occurrence Handle11524383Occurrence Handle10.1093/bioinformatics/17.8.754Occurrence Handle1:STN:280:DC%2BD3MvotV2isw%3D%3D ArticlePubMedCAS Google Scholar
Y Inagaki WF Doolittle SL Baldauf AJ Roger (2002)ArticleTitleLateral transfer of an EF-1α gene: origin and evolution of the large subunit of ATP sulfurylase in eubacteria.Curr Biol12 772–776Occurrence Handle12007424Occurrence Handle10.1016/S0960-9822(02)00816-3Occurrence Handle1:CAS:528:DC%2BD38XjsFygtbk%3D ArticlePubMedCAS Google Scholar
– Susko E, Fast NM, Roger AJ (2004) Covarion shifts cause a long branch attraction artifact that unites microsporidia and archaebacteria in EF-1α phylogenies. Mol Biol Evol 21: 1340–1349 Google Scholar
N Iwabe K Kuma M Hasegawa S Osawa T Miyata (1989)ArticleTitleEvolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes.Proc Natl Acad Sci USA86 9355–9359Occurrence Handle2531898Occurrence Handle1:CAS:528:DyaK3cXkvF2rtg%3D%3D PubMedCAS Google Scholar
DT Jones WR Taylor JM Thornton (1992)ArticleTitleThe rapid generation of mutation data matrices from protein sequences.Comput Appl Biosci8 275–282Occurrence Handle1633570Occurrence Handle1:CAS:528:DyaK38Xlt1Okt7w%3D PubMedCAS Google Scholar
JM Kollman RF Doolittle (2000)ArticleTitleDetermining the relative rates of change for prokaryotic and eukaryotic proteins with anciently duplicated paralogs.J Mol Evol51 173–181Occurrence Handle10948274Occurrence Handle1:CAS:528:DC%2BD3cXmsVOrs7g%3D PubMedCAS Google Scholar
B Labedan A Boyen M Baetens D Charlier P Chen R Cunin V Durbeco N Glansdorff G Herve C Legrain Z Liang C Purcarea M Roovers R Sanchez TL Toong M Vande Casteele F van Vliet Y Xu YF Zhang (1999)ArticleTitleThe evolutionary history of carbamoyltransferases: a complex set of paralogous genes was already present in the last universal common ancestor.J Mol Evol49 461–473Occurrence Handle10486004Occurrence Handle1:CAS:528:DyaK1MXmslWhsbg%3D PubMedCAS Google Scholar
JA Lake MC Rivera (2004)ArticleTitleDeriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction.Mol Biol Evol21 681–690Occurrence Handle14739244Occurrence Handle1:CAS:528:DC%2BD2cXjt1egu7w%3D PubMedCAS Google Scholar
FS Lawson RL Charlebois JA Dillon (1996)ArticleTitlePhylogenetic analysis of carbamoylphosphate synthetase genes: complex evolutionary history includes an internal duplication within a gene which can root the tree of life.Mol Biol Evol13 970–977Occurrence Handle8752005Occurrence Handle1:CAS:528:DyaK28XltlSmsLY%3D PubMedCAS Google Scholar
P Lopez P Forterre H Philippe (1999)ArticleTitleThe root of the tree of life in the light of the covarion model.J Mol Evol49 496–508Occurrence Handle10486007Occurrence Handle1:CAS:528:DyaK1MXmslWhtro%3D PubMedCAS Google Scholar
W Martin T Rujan E Richly A Hansen S Cornelsen T Lins D Leister B Stoebe M Hasegawa D Penny (2002)ArticleTitleEvolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus.Proc Natl Acad Sci USA99 12246–12251Occurrence Handle12218172Occurrence Handle1:CAS:528:DC%2BD38XntlCks70%3D PubMedCAS Google Scholar
H Nyunoya CJ Lusty (1983)ArticleTitleThe carB gene of Escherichia coli: a duplicated gene coding for the large subunit of carbamoyl-phosphate synthetase.Proc Natl Acad Sci USA80 4629–4633Occurrence Handle6308632Occurrence Handle1:CAS:528:DyaL3sXlsFaqurg%3D PubMedCAS Google Scholar
H Philippe P Forterre (1999)ArticleTitleThe rooting of the universal tree of life is not reliable.J Mol Evol49 509–523Occurrence Handle10486008Occurrence Handle1:CAS:528:DyaK1MXmslWhtrs%3D PubMedCAS Google Scholar
– Budin K, Moreira D (1999) Horizontal transfers confuse the prokaryotic phylogeny based on the HSP70 protein family. Mol Microbiol 31: 1007–1009 Google Scholar
JP Richardson (2002)ArticleTitleRho-dependent termination and ATPases in transcript termination.Biochim Biophys Acta1577 251–260Occurrence Handle12213656Occurrence Handle1:CAS:528:DC%2BD38Xms1yhurs%3D PubMedCAS Google Scholar
HA Schmidt K Strimmer M Vingron A von Haeseler (2002)ArticleTitleTREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing.Bioinformatics18 502–504Occurrence Handle11934758Occurrence Handle10.1093/bioinformatics/18.3.502Occurrence Handle1:CAS:528:DC%2BD38XivFKrsL0%3D ArticlePubMedCAS Google Scholar
RM Schwartz MO Dayhoff (1978)ArticleTitleOrigins of prokaryotes, eukaryotes, mitochondria, and chloroplasts.Science199 395–403Occurrence Handle202030Occurrence Handle1:CAS:528:DyaE1cXhtVSgurc%3D PubMedCAS Google Scholar
K Strimmer A von Haeseler (1997)ArticleTitleLikelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment.Proc Natl Acad Sci USA94 6815–6819Occurrence Handle9192648Occurrence Handle10.1073/pnas.94.13.6815Occurrence Handle1:CAS:528:DyaK2sXktF2ruro%3D ArticlePubMedCAS Google Scholar
JD Thompson DG Higgins TJ Gibson (1994)ArticleTitleCLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic Acids Res22 4673–4680Occurrence Handle7984417Occurrence Handle1:CAS:528:DyaK2MXitlSgu74%3D PubMedCAS Google Scholar
R Thomson JK Pritchard P Shen PJ Oefner MW Feldman (2000)ArticleTitleRecent common ancestry of human Y chromosomes: evidence from DNA sequence data.Proc Natl Acad Sci USA97 7360–7365Occurrence Handle10861004Occurrence Handle10.1073/pnas.97.13.7360Occurrence Handle1:CAS:528:DC%2BD3cXksVKiu78%3D ArticlePubMedCAS Google Scholar
J Tovar G Leon-Avila LB Sanchez R Sutak J Tachezy M van der Giezen M Hernandez M Muller JM Lucocg (2003)ArticleTitleMitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation.Nature426 172–176Occurrence Handle14614504Occurrence Handle10.1038/nature01945Occurrence Handle1:CAS:528:DC%2BD3sXovVKmtLw%3D ArticlePubMedCAS Google Scholar
PA Underhill P Shen AA Lin L Jin G Passarino WH Yang E Kauffman B Bonne-Tamir J Bertranpetit P Francalacci M Ibrahim T Jenkins JR Kidd SQ Mehdi MT Seielstad RS Wells A Piazza RW Davis MW Feldman LL Cavalli-Sforza PJ Oefner (2000)ArticleTitleY chromosome sequence variation and the history of human populations.Nat Genet26 358–361Occurrence Handle11062480Occurrence Handle10.1038/81685Occurrence Handle1:CAS:528:DC%2BD3cXotVWhtr4%3D ArticlePubMedCAS Google Scholar
L Vigilant M Stoneking H Harpending K Hawkes AC Wilson (1991)ArticleTitleAfrican populations and the evolution of human mitochondrial DNA.Science253 1503–1507Occurrence Handle1840702Occurrence Handle1:CAS:528:DyaK3MXmt1Ghu7g%3D PubMedCAS Google Scholar
AP Vogler M Homma VM Irikura RM Macnab (1991)ArticleTitle Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of FliI to F0F1, vacuolar, and archaebacterial ATPase subunits.J Bacteriol173 3564–3572Occurrence Handle1646201Occurrence Handle1:CAS:528:DyaK38XjsFamsw%3D%3D PubMedCAS Google Scholar
– Magrum LJ, Fox GE (1978) Archaebacteria. J Mol Evol 11: 245–251
– Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87: 4576–4579 Google Scholar
O Zhaxybayeva JP Gogarten (2003)ArticleTitleAn improved probability mapping approach to assess genome mosaicism.BMC Genomics4 37Occurrence Handle12974984Occurrence Handle10.1186/1471-2164-4-37 ArticlePubMed Google Scholar
– – (2004) Cladogenesis, coalescence and the evolution of the three domains of life. Trends Genet 20: 182–187
– Hamel L, Raymond J, Gogarten J (2004a) Visualization of the phylogenetic content of five genomes using dekapentagonal maps. Genome Biol 5: R20
– Lapierre P, Gogarten JP (2004b) Genome mosaicism and organismal lineages. Trends Genet 20: 254–260 Google Scholar
Zillig W, Palm P, Klenk H-P (1992) A model of the early evolution of organisms: the arisal of the three domains of life from the common ancestor. In: Hartman H, Matsuno K (eds) The origin and evolution of the cell. World Scientific, Singapore, pp 163–182