Friedrichbeckeite, K (□0.5Na0.5)2 (Mg0.8Mn0.1Fe0.1)2 (Be0.6 Mg0.4)3 [Si12O30], a new milarite-type mineral from the Bellerberg volcano, Eifel area, Germany (original) (raw)
Abstract
Friedrichbeckeite is a new milarite-type mineral. It was found in a single silicate-rich xenolith from a quarry at the Bellerberg volcano near Ettringen, eastern Eifel volcanic area, Germany. It forms thin tabular crystals flattened on {0001}, with a maximum diameter of 0.6 mm and a maximum thickness of 0.1 mm. It is associated with quartz, tridymite, augite, sanidine, magnesiohornblende, enstatite, pyrope, fluorapatite, hematite, braunite and roedderite. Friedrichbeckeite is light yellow, with white to light cream streak and vitreous lustre. It is brittle with irregular fracture and no cleavage, Mohs hardness of 6, calculated density is 2.686 gcm−3. Optically, it is uniaxial positive with nω = 1.552(2) and nε = 1.561(2) at 589.3 nm and a distinct pleochroism from yellow (//ω) to light blue (//ε). Electron microprobe analyses yielded (wt.%): Na2O 2.73, K2O 4.16, BeO 4.67, MgO 11.24, MnO 2.05, FeO 1.76, Al2O3 0.15, SiO2 73.51, (Σ CaO, TiO2 = 0.06) sum 100.33 (BeO determined by LA-ICP-MS). The empirical formula based on Si = 12 is K0.87 Na0.86 (Mg1.57Mn0.28Fe0.24)Σ2.09 (Be1.83 Mg1.17)Σ3.00 [Si12O30], and the simplified formula can be given as K (□0.5Na0.5)2 (Mg0.8Mn0.1Fe0.1)2 (Be0.6 Mg0.4)3 [Si12O30]. Friedrichbeckeite is hexagonal, space-group _P_6/mcc, with a = 9.970(1), c = 14.130(3) Å, V = 1216.4(3) Å3, and Z = 2. The strongest lines in the X-ray powder diffraction pattern are (d in Å / I obs / hkl): 3.180 / 100 / 121, 2.885 / 70 / 114, 4.993 / 30 / 110, 4.081 / 30 / 112, 3.690 / 30 / 022. A single-crystal structure refinement (_R_1 = 3.62 %) confirmed that the structure is isotypic with milarite and related [12] C [9] B 2 [6] A 2 [4] _T_23 [[4] _T_112O30] compounds. The _C_-site is dominated by potassium, the _B_-site is almost half occupied by sodium, and the _A_-site is dominated by Mg. The site-scattering at the _T_2-site can be refined to a Be/(Be + Mg) value close to 0.61; the _T_1-site is occupied by Si. Micro-Raman spectroscopy reveals an increasing splitting of scattering bands around 550 cm−1 for friedrichbeckeite. The mineral can be classified as an unbranched ring silicate or as a beryllo-magnesiosilicate. With respect to the end-member formula K (□0.5Na0.5)2 Mg2 Be3 [Si12O30] friedrichbeckeite represents the Mg-dominant analogue of almarudite, milarite or oftedalite. The mineral and its paragenesis were formed during pyrometamorphic modifications of the silicate-rich xenoliths enclosed in Quaternary leucite-tephritic lava of the Bellerberg volcano. Holotype material of friedrichbeckeite has been deposited at the mineral collection of the Naturhistorisches Museum Wien, Austria. The mineral is named friedrichbeckeite in honour of the Austrian mineralogist and petrographer Friedrich Johann Karl Becke (1855–1931).
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
References
- Abraham K, Gebert W, Medenbach O, Schreyer W, Hentschel G (1983) Eifelite, KNa3Mg4Si12O30, a new mineral of the osumilite group with octahedral sodium. Contrib Mineral Petrol 82:252–258
Article Google Scholar - Armbruster T (1989) Crystal chemistry of double-ring silicates: structure of roedderite at 100 and 300 K. Eur J Mineral 1:715–718
Google Scholar - Armbruster T (1999) Si, Al ordering in the double-ring silicate armenite, BaCa2Al6Si9O30·2H2O: A single-crystal X-ray and 29Si MAS NMR study. Am Mineral 84:92–101
Google Scholar - Armbruster T, Bermanec V, Wenger M, Oberhänsli R (1989) Crystal chemistry of double-ring silicates: structure of natural and dehydrated milarite at 100 K. Eur J Mineral 1:353–362
Google Scholar - Armbruster T, Oberhänsli R (1988a) Cystal chemistry of double-ring silicates : Structural, chemical and optical variation in osumilites. Am Mineral 77:585–594
Google Scholar - Armbruster T, Oberhänsli R (1988b) Crystal chemistry of double-ring silicates: Structures of sugilite and brannockite. Am Mineral 73:595–600
Google Scholar - Baerlocher C, Meier WM, Olson DH (2001) Atlas of zeolite framework types, 5th Ed. Elsevier, Amsterdam, The Netherlands, p 302
Google Scholar - Becke F (1892) Petrographische Studien am Tonalit des Rieserferner. Tschermaks Mineral Petrogr Mitth 13:379–430 cf. p 386
Google Scholar - Bogaard P, Schmincke H-U (1990) Die Entwicklungsgeschichte des Mittelrheinraumes und die Eruptionsgeschichte des Osteifel-Vulkanfeldes. In: Schirmer W (ed) Rheingeschichte zwischen Mosel und Maas. Deuqua Führer, 1. Hannover, Germany, pp 166–190
Google Scholar - Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197
Google Scholar - Brown ID (1996) VALENCE: a program for calculating bond valences. J Appl Crystallogr 29:479–480
Article Google Scholar - Bunch TE, Fuchs LH (1969) Yagiite, a new sodium-magnesium analogue of osumilite. Am Mineral 54:14–18
Google Scholar - Černý P, Hawthorne FC, Jarosewich E (1980) Crystal chemistry of milarite. Can Mineral 18:41–57
Google Scholar - Chester AH (1896) A dictionary of the names of minerals including their history and etymology. Wiley and Sons, New York, p 320
Google Scholar - Cooper MA, Hawthorne FC, Ball NA, Černý P, Kristiansen R (2006) Oftedalite, (Sc, Ca, Mn2+) 2 K (Be, Al) 3 Si12O30, a new member of the milarite group from the Heftetjern pegmatite, Tørdal, Norway: Description and crystal structure. Can Mineral 44:943–949
Article Google Scholar - Cooper MA, Hawthorne FC, Grew ES (1999) The crystal chemistry of sogdianite, a milarite-group mineral. Am Mineral 84:764–768
Google Scholar - Dodd RT, van Schmus WR, Marvin UB (1965) Merrihueite, a new alkali-ferromagnesian silicate from the Mezö-Madaras chondrite. Science 149:972–974
Article Google Scholar - Downs RT (2006) The RRUFF Project: An integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan, O03–13
- Dowty E (2006) ATOMS: A computer program for displaying atomic structures. Kingsport TN 37663, USA
- Embrey PG, Fuller JP (1980) A manual of new mineral names 1892–1978. Oxford University Press, New York, p 467
Google Scholar - Ferraris G, Prencipe M, Pautov LA, Sokolova EV (1999) The crystal structure of darapiosite and a comparison with Li-and Zn-bearing minerals of the milarite group. Can Mineral 37:769–774
Google Scholar - Fischer RX, Lengauer CL, Tillmanns E, Ensink RJ, Reiss CA, Fantner EJ (1993) PC-Rietveld plus, a comprehensive Rietveld analysis package for PC. Mater Sci Forum 133–136:287–292
Article Google Scholar - Fischer RX, Tillmanns E (1988) The equivalent isotropic displacement factor. Acta Crystallogr C44:775–776
Google Scholar - Forbes WC, Baur WH, Khan AA (1972) Crystal chemistry of milarite-type minerals. Am Mineral 57:463–472
Google Scholar - Gandolfi G (1964) Metodo per ottenere uno spettro di polveri da un cristallo singolo di piccole dimensioni (fino a 30 μ). Mineral. Petrogr. Acta 10:149–156
Google Scholar - Grice JD, Erict TS, Van Velthuizen J, Dunn PJ (1987) Poudretteite, KNa2B3Si12O30, a new member of the osumilite group from Mont Saint-Hilaire, Quebec, and its crystal structure. Can Mineral 25:763–766
Google Scholar - Hawthorne FC (2002) The use of end-member charge-arrangements in defining new mineral species and heterovalent substitutions in complex minerals. Can Mineral 40:699–710
Article Google Scholar - Hawthorne FC, Kimata M, Černý P, Ball N, Rossman GR, Grice JD (1991) The crystal chemistry of the milarite-group minerals. Am Mineral 76:1836–1856
Google Scholar - Hawthorne FC, Smith JV (1986) Enumeration of 4-connected 3-dimensional nets and classification of framework silicates. 3D nets based on insertion of 2-connected vertices into 3-connected plane nets. Z Kristallogr 175:15–30
Google Scholar - Hentschel G (1987) Die Mineralien der Eifelvulkane, 2nd Ed. Weise, München, Germany, p 177
Google Scholar - Hrauda N (2006) Manganführende Minerale der Osumilithgruppe aus dem Eifelgebiet. Diploma thesis, Universität Wien, Wien, p 104
Google Scholar - Irran E, Tillmanns E, Hentschel G (1997) Ternesite, Ca5(SiO4) 2(SO4), a new mineral from the Ettringer Bellerberg, Eifel, Germany. Mineral Petrol 60:121–132
Article Google Scholar - Khan AA, Baur WH, Forbes WC (1972) Synthetic magnesian merrihueite, dipotassium pentamagnesium dodecasilicate: a tetrahedral magnesiosilicate framework crystal structure. Acta Crystallogr B28:267–272
Google Scholar - Krause W, Blass G, Effenberger H (1999) Schäferite, a new vanadium garnet from the Bellberg volcano, Eifel, Germany. N Jb Mineral Mh 1999:123–134
Google Scholar - Liebau F (1985) Structural chemistry of silicates. Springer, Berlin, Germany, p 347
Google Scholar - Łodziński M, Wrzalik A, Sitarz M (2005) Micro-Raman spectroscopy studies of some accessory minerals from pegmatites of the Sowie Mts and Strzegom-Sobótka massif, Lower Silesia, Poland. J Mol Str 744–747:1017–1026
Google Scholar - Mandarino JA (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. Can Mineral 19:441–450
Google Scholar - McMillan P, Putnis A, Carpenter M (1984) A Raman spectroscopic study of Al-Si ordering in synthetic magnesium cordierite. Phys Chem Minerals 10:256–260
Article Google Scholar - Meyer W (1994) Geologie der Eifel, 3rd Ed. Schweizerbart, Stuttgart, Germany, p 618
Google Scholar - Mighell AD, Hubbard CR, Stalick JK (1981) NBS*AIDS83: A FORTRAN program for crystallographic data evaluation. NBS Technical Note 1141
- Mihajlović T, Lengauer CL, Ntaflos T, Kolitsch U, Tillmanns E (2004) Two new minerals, rondorfite, Ca8Mg[SiO4]4Cl2, and almarudite, K(□, Na) 2(Mn, Fe, Mg) 2(Be, Al) 3[Si12O30], and a study on iron-rich wadalite, Ca12[(Al8Si4Fe2) O32]Cl6, from the Bellerberg (Bellberg) volcano, Eifel, Germany. N Jb Mineral Abh 179:265–294
Article Google Scholar - Otwinowski Z, Borek D, Majewski W, Minor W (2003) Multiparametric scaling of diffraction intensities. Acta Crystallogr A59:228–234
Google Scholar - Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology Series Vol 276: Macromolecular Crystallogr A 307–326 (Carter CW, Sweet RM Eds.), Academic, San Diego
- Pautov LA, Agakhanov AA (1997) Berezanskite, KLi3Ti2Si12O30, a new mineral. Zap Vseross Mineral Obshch 126(4):75–80
Google Scholar - Pautov LA, Agakhanov AA, Sokolova EV (1998) Shibkovite K(Ca, Mn, Na) 2(K2-x□x) Zn3Si12O30-a new mineral of the milarite group. Zap Vseross Mineral Obshch 127(4):89–94
Google Scholar - Pautov LA, Agakhanov AA, Sokolova EV, Ignatenko KI (1996) Dusmatovite a new mineral of the milarite group. Vestnik Moscov Univ, Ser 4 Geol (2):54–60
- Poon WCK, Putnis A, Salje E (1990) Structural states of Mg cordierite: IV. Raman spectroscopy and local order parameter behaviour. J Phys Condens Matter 2:6361–6372
Google Scholar - Postl W, Walter F, Ettinger K, Hauzenberger C, Bojar HP (2004) Trattnerite, (Fe, Mg) 2(Mg, Fe) 3[Si12O30], a new mineral of the milarite group: mineral data and crystal structure. Eur J Mineral 16:375–380
Article Google Scholar - Rüdinger B, Tillmanns E, Hentschel G (1993) Bellbergite-a new mineral with the zeolite structure type EAB. Mineral Petrol 48:147–152
Article Google Scholar - Schreyer W, Hentschel G, Abraham K (1983) Osumilith in der Eifel und die Verwendung dieses Minerals als petrogenetischer Indikator. Tschermaks Mineral Petrogr Mitt 31:215–234
Article Google Scholar - Sheldrick GM (1997) SHELXS-97 and SHELXL-97. Universität Göttingen, Göttingen, Germany
Google Scholar - Straumanis M, Jevinš A (1936) Präzisionsaufnahmen nach dem Verfahren von Debye und Scherrer. II. Z Physik 98:461–475
Article Google Scholar - Velde D, Medenbach O, Wagner C, Schreyer W (1989) Chayesite, K(Mg, Fe2 +) 4Fe3 + [Si12O30]: A new rock forming silicate mineral of the osumilite group from the Moon Canyon (Utah) lamproite. Am Mineral 74:1368–1373
Google Scholar - Wilson AJC, Prince E (1999) International tables for crystallography, vol C. Mathematical, physical and chemical tables. 2nd Ed, Kluwer, Dordrecht, The Netherlands, 992 pp
- Winter W, Armbruster T, Lengauer CL (1995) Crystal structure refinement of synthetic osumilite-type phases: BaMg2Al6Si9O30, SrMg2Al6Si9O30 and Mg2Al4Si11O30. Eur J Mineral 7:227–286
Google Scholar - Winter W, Berger A, Müller G, Pannhorst W (1993) Crystallization mechanism of MAS osumilite with composition Mg2Al4Si11O30 from glass. J Am Ceram Soc 76:1837–1843
Article Google Scholar
Acknowledgements
The authors thank J. Jahn (Neuwied, Germany) for providing the material studied in the present paper, M. Wagner for sample preparations as well as T. Ntaflos, U. Klötzli, M. A. Götzinger and G. Giester (all Wien, Austria) for their support with the chemical microanalyses and single-crystal X-ray diffraction. The useful comments of CNMNC members and the detailed suggestions of M. Cooper (Winnipeg, Canada) and an anonymous reviewer as well as the considerable improvements of the Associate Editor A. Chakhmouradian (Winnipeg, Canada) are gratefully acknowledged. The work was supported by the International Centre for Diffraction Data through Grant 90–03.
Author information
Authors and Affiliations
- Institut für Mineralogie und Kristallographie, Universität Wien-Geozentrum, Althanstrasse 14, A-1090, Wien, Austria
C. L. Lengauer, R. Krickl & E. Tillmanns - Institut für Halbleiter- und Festkörperphysik, Johannes Keppler Universität Linz, Linz, Austria
N. Hrauda - Mineralogisch-Petrographische Abteilung, Naturhistorisches Museum, Wien, Austria
U. Kolitsch
Authors
- C. L. Lengauer
You can also search for this author inPubMed Google Scholar - N. Hrauda
You can also search for this author inPubMed Google Scholar - U. Kolitsch
You can also search for this author inPubMed Google Scholar - R. Krickl
You can also search for this author inPubMed Google Scholar - E. Tillmanns
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toC. L. Lengauer.
Additional information
Editorial handling: A. R. Chakhmouradian
Rights and permissions
About this article
Cite this article
Lengauer, C.L., Hrauda, N., Kolitsch, U. et al. Friedrichbeckeite, K (□0.5Na0.5)2 (Mg0.8Mn0.1Fe0.1)2 (Be0.6 Mg0.4)3 [Si12O30], a new milarite-type mineral from the Bellerberg volcano, Eifel area, Germany.Miner Petrol 96, 221–232 (2009). https://doi.org/10.1007/s00710-009-0050-9
- Received: 16 October 2008
- Accepted: 17 March 2009
- Published: 08 May 2009
- Issue Date: July 2009
- DOI: https://doi.org/10.1007/s00710-009-0050-9