Study of a structurally similar kappa opioid receptor agonist and antagonist pair by molecular dynamics simulations (original) (raw)
Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366–428 ArticleCAS Google Scholar
Sharma SK, Jones RM, Metzger TG, Ferguson DM, Portoghese PS (2001) Transformation of a kappa-opioid receptor antagonist to a kappa-agonist by transfer of a guanidinium group from the 5′- to 6′-position of naltrindole. J Med Chem 44:2073–2079. doi:10.1021/jm010095v ArticleCAS Google Scholar
Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502. doi:10.1038/nature07330 ArticleCAS Google Scholar
Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–188. doi:10.1038/nature07063 ArticleCAS Google Scholar
Pogozheva ID, Przydzial MJ, Mosberg HI (2005) Homology modeling of opioid receptor-ligand complexes using experimental constraints. AAPS J 7:E434–E448. doi:10.1208/aapsj070243 ArticleCAS Google Scholar
Kolinski M, Filipek S (2009) Studies of the activation steps concurrent to ligand binding in DOR and KOR opioid receptors based on molecular dynamics simulations. TOSBJ 3:51–63. doi:10.2174/1874199100903010051 ArticleCAS Google Scholar
Corbett AD, Henderson G, McKnight AT, Paterson SJ (2006) 75 years of opioid research: the exciting but vain quest for the Holy Grail. Br J Pharmacol 147:S153–S162. doi:10.1038/sj.bjp.0706435 ArticleCAS Google Scholar
Terrillon S, Bouvier M (2004) Roles of G-protein-coupled receptor dimerization—from ontogeny to signalling regulation. EMBO Rep 5:30–34. doi:10.1038/sj.embor.7400052 Google Scholar
Milligan G (2008) A day in the life of a G protein-coupled receptor: the contribution to function of G protein-coupled receptor dimerization. Br J Pharmacol 153:S216–S229. doi:10.1038/sj.bjp.0707490 ArticleCAS Google Scholar
Waldhoer M, Fong J, Jones RM, Lunzer MM, Sharma SK, Kostenis E, Portoghese PS, Whistler JL (2005) A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers. Proc Natl Acad Sci USA 102:9050–9055. doi:10.1073/pnas.0501112102 ArticleCAS Google Scholar
Rives ML, Vol C, Fukazawa Y, Tinel N, Trinquet E, Ayoub MA, Shigemoto R, Pin JP, Prezeau L (2009) Crosstalk between GABA(B) and mGlu1a receptors reveals new insight into GPCR signal integration. EMBO J 28:2195–2208. doi:10.1038/emboj.2009.177 ArticleCAS Google Scholar
Kuszak AJ, Pitchiaya S, Anand JP, Mosberg HI, Walter NG, Sunahara RK (2009) Purification and functional reconstitution of monomeric mu-opioid receptors. Allosteric modulation of agonist binding by Gi2. J Biol Chem 284:26732–26741. doi:10.1074/jbc.M109.026922 Google Scholar
Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 angstrom crystal structure. J Mol Biol 342:571–583. doi:10.1016/j.jmb.2004.07.044 ArticleCAS Google Scholar
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 ArticleCAS Google Scholar
Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein structure modeling by MODELLER. Proteins 23:318–326. doi:10.1002/prot.340230306 Google Scholar
Sanchez R, Sali A (1997) Evaluation of comparative protein structure modeling by MODELLER-3. Proteins Suppl 1:50–58 Google Scholar
Kolinski A, Skolnick J (2004) Reduced models of proteins and their applications. Polymer 45:511–524 ArticleCAS Google Scholar
Kolinski A (2004) Protein modeling and structure prediction with a reduced representation. Acta Biochim Pol 51:349–371 CAS Google Scholar
Gront D, Hansmann UHE, Kolinski A (2005) Exploring protein energy landscapes with hierarchical clustering. Int J Quantum Chem 105:826–830. doi:10.1002/qua.20741 ArticleCAS Google Scholar
Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. doi:10.1002/jcc.20291 Article Google Scholar
Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013. doi:10.1016/S0006-3495(97)78845-3 ArticleCAS Google Scholar
van der Spoel D, van Maaren PJ, Berendsen HJC (1998) A systematic study of water models for molecular simulation: derivation of water models optimized for use with a reaction field. J Chem Phys 108:10220–10230. doi:10.1063/1.476482 Article Google Scholar
Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. doi:10.1063/1.464397 ArticleCAS Google Scholar
Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atom-centered charges: the RESP model. J Phys Chem 97:10269–10280. doi:10.1021/j100142a004 ArticleCAS Google Scholar
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38 ArticleCAS Google Scholar
Latek D, Ekonomiuk D, Kolinski A (2007) Protein structure prediction: combining de novo modeling with sparse experimental data. J Comput Chem 28:1668–1676. doi:10.1002/jcc.20657 ArticleCAS Google Scholar
Kolinski A, Bujnicki JM (2005) Generalized protein structure prediction based on combination of fold-recognition with de novo folding and evaluation of models. Proteins 61(Suppl 7):84–90 ArticleCAS Google Scholar
Reynolds KA, Katritch V, Abagyan R (2009) Identifying conformational changes of the beta(2) adrenoceptor that enable accurate prediction of ligand/receptor interactions and screening for GPCR modulators. J Comput Aided Mol Des 23:273–288. doi:10.1007/s10822-008-9257-9 ArticleCAS Google Scholar
Huber T, Menon S, Sakmar TP (2008) Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery. Biochemistry 47:11013–11023. doi:10.1021/bi800891r ArticleCAS Google Scholar
Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EYT, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A(2A) adenosine receptor bound to an antagonist. Science 322:1211–1217. doi:10.1126/science.1164772 ArticleCAS Google Scholar
Kim JM, Altenbach C, Kono M, Oprian DD, Hubbell WL, Khorana HG (2004) Structural origins of constitutive activation in rhodopsin: role of the K296/E113 salt bridge. Proc Natl Acad Sci USA 101:12508–12513. doi:10.1073/pnas.0404519101 ArticleCAS Google Scholar