Diffusion in Musculoskeletal Tissue Engineering Scaffolds: Design Issues Related to Porosity, Permeability, Architecture, and Nutrient Mixing (original) (raw)
References
Agrawal, C. M., J. S. McKinney, D. Huang., and K. A. Athanasiou. The use of the vibrating particle technique to fabricate highly porous and permeable biodegradable scaffolds. In: Synthetic Bioabsorbable Polymers for Implants, ASTM STP 1396, edited by C. M. Agrawal, J. E. Parr, and S. T. Lin. West Conshohocken, PA: American Society for Testing and Materials, 2000, pp. 99–114. Google Scholar
Agrawal, C. M., J. S. McKinney, D. Lanctot., and K. A. Athanasiou. Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering. Biomaterials 21(23):2443–2452, 2000. Google Scholar
Agrawal, C. M., and J. L. Ong. Personal Communication.
Agrawal, C. M., and R. B. Ray. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 55(2):141–150, 2001. Google Scholar
Ang, T. H., F. S. A. Sultana, D. W. Hutmacher, Y. S. Wong, J. Y. H. Fuh, X. M. Mo, H. T. Loh, E. Burdet., and S. H. Teoh. Fabrication of 3D chitosan-hydroxyapatite scafolds using a robotic dispensing system. Mater. Sci. Eng. C 20(1/2):35–42, 2002. Google Scholar
Athanasiou, K. A., J. P. Schmitz, and C. M. Agrawal. The effects of porosity on degradation of PLA-PGA implants. Tissue Eng. 4:53–63, 1998. Google Scholar
Bancroft, G. N., V. I. Sikavitsas, and A. G. Mikos. Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng. 9(3):549–554, 2003. Google Scholar
Bancroft, G. N., V. I. Sikavitsas, J. Dolder., T. L. Sheffield, C. G. Ambrose, J. A. Jansen, and A. G. Mikos. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Natl Acad. Sci. USA 99(20):12600–12605, 2002. Google Scholar
Barralet, J. E., L. Grover., T. Gaunt., A. J. Wright, and I. R. Gibson. Preparation of macroporous calcium phosphate cement tissue engineering scaffold. Biomaterials 23:3063–3072, 2002. Google Scholar
Bobyn, J. D., R. M. Pilliar, H. U. Cameron, and G. C. Weatherly. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin. Orthop. 150:263–270, 1980. Google Scholar
Bobyn, J. D., R. M. Pilliar, H. U. Cameron, G. C. Weatherly, and G. M. Kent. The effect of porous surface configuration on the tensile strength of fixation of implants by bone ingrowth. Clin. Orthop. 149:291–298, 1980. Google Scholar
Borden, M., S. F. El-Amin, M. Attawia., and C. T. Laurencin. Structural and human cellular assessment of a novel microsphere-based tissue engineered scaffold for bone repair. Biomaterials 24:597–609, 2003. Google Scholar
Botchwey, E. A., M. A. Dupree, S. R. Pollack, E. M. Levine, and C. T. Laurencin. Tissue engineered bone: Measurement of nutrient transport in three-dimensional matrices. J. Biomed. Mater. Res. 67A:357–367, 2003. Google Scholar
Botchwey, E. A., S. R. Pollack, S. El-Amin, E. M. Levine, R. S. Tuan, and C. T. Laurencin. Human osteoblast-like cells in three-dimensional culture with fluid flow. Biorheology 40(1–3):299–306, 2003. Google Scholar
Burg, K. J. L., J. W. D. Holder, C. R. Culberson, R. J. Beiler, K. G. Greene, A. B. Loebsack, W. D. Roland, P. Eiselt., D. J. Mooney, and C. R. Halberstadt. Comparative study of seeding methods for three-dimensional polymeric scaffolds. J. Biomed. Mater. Res. 51:642–649, 2000. Google Scholar
Cao, T., K. H. Ho, and S. H. Teoh. Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Eng. 9 Supplement 1(4):S103–S112, 2003. Google Scholar
Carrier, R., M. Pupnick., R. Langer., L. Freed., and G. Vunjak-Novakovic. Effects of oxygen on engineered cardiac muscle. Biotechnol. Bioeng. 78:617–625, 2002. Google Scholar
Chu, T. M. G., D. G. Orton, S. J. Hollister, S. E. Feinberg, and J. W. Halloran. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 23:1283–1293, 2002. Google Scholar
Cima, L. G., and M. J. Cima. Preparation of medical devices by solid free-form fabrication methods. United States Patent 5, 490, 962, 1996.
Collins, R. E. Flow of Fluids Through Porous Material s. Tulsa., OK: PennWell Publishing Company, 1976, pp. 270. Google Scholar
Cooke, M. N., J. P. Fisher, D. Dean., C. Rimnac., and A. G. Mikos. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J. Biomed. Mater. Res. 64B(2):65–69, 2003. Google Scholar
Crump, S. S. Apparatus and method for creating three-dimensional objects. United States Patent 5, 121, 329, 1992.
Curodeau, A., E. Sachs., and S. Caldaraise. Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell. J. Biomed. Mater. Res. 53:525–535, 2000. Google Scholar
Dolder, J., G. N. Bancroft, V. L. Sikavitsas, P. H. M. Spauwen, J. A. Jansen, and A. G. Mikos. Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh. J. Biomed. Mater. Res. 64A:235–241, 2003. Google Scholar
Eid, K., E. Chen., L. Griffith., and J. Glowacki. Effect of RGD coating on osteocompatibility of PLGA-polymer disks in a rat tibial wound. J. Biomed. Mater. Res. 57(2):224–231, 2001. Google Scholar
Fisher, J. P., J. W. Vehof, D. Dean., J. P. v. D. Waerden, T. A. Holland, A. G. Mikos, and J. A. Jansen. Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. J. Biomed. Mater. Res. 59(3):547–556, 2002. Google Scholar
Freed, L. E., J. C. Marquis, G. Vunjak-Novakovic, J. Emmanual., and R. Langer. Composition of cell-polymer cartilage implants. Biotechnol. Bioeng. 43:605–614, 1994. Google Scholar
Freed, L. E., G. Vunjak-Novakovic, R. J. Biron, D. B. Eagles, D. C. Lesnoy, S. K. Barlow, and R. Langer. Biodegradable polymer scaffolds for tissue engineering. Biotechnology (NY) 12(7):689–693, 1994. Google Scholar
Freed, L. E., G. Vunjak-Novakovic, and R. Langer. Cultivation of cell-polymer cartilage implants in bioreactors. J. Cell. Biochem. 51(3):257–264, 1993. Google Scholar
Freed, L. E., G. Vunjak-Novakovic, J. C. Marquis, and R. Langer. Kinetics of chondrocyte growth in cell-polymer implants. Biotechnol. Bioeng. 43:597–604, 1994. Google Scholar
Giordano, R. A., B. M. Wu, S. W. Borland, L. G. Cima, E. M. Sachs, and M. J. Cima. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J. Biomater. Sci. Polym. Ed. 8(1):63–75, 1996. Google Scholar
Goldstein, A. S., T. M. Juarez, C. D. Hemke, M. C. Gustin, and A. G. Mikos. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22:1279–1288, 2001. Google Scholar
Goldstein, A. S., G. Zhu., G. E. Morris, R. K. Meszlenyi, and A. G. Mikos. Effect of osteoblastic culture conditions on the structure of poly(DL-Lactic-co-Glycolic Acid) foam scaffolds. Tissue Eng. 5(5):421–433, 1999. Google Scholar
Gomes, M. E., V. I. Sikavitsas, E. Behravesh., R. L. Reis, and A. G. Mikos. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J. Biomed. Mater. Res. 67A:87–95, 2003. Google Scholar
Gooch, K., J. Kwon., T. Blunk., R. Langer., L. E. Freed, and G. Vunjak-Novakovic. Effects of mixing intensity on tissue-engineered cartilage. Biotechnol. Bioeng. 72:402–407, 2001. Google Scholar
Grynpas, M. D., R. M. Pilliar, R. A. Kandel, R. Renlund., M. Filiaggi., and M. Dumitriu. Porous calcium polyphosphate scaffolds for bone substitute applications in vivo studies. Biomaterials 23:2063–2070, 2002. Google Scholar
Holy, C. E., J. A. Fialkov, J. E. Davies, and M. S. Shoichet. Use of a biomimetic strategy to engineer bone. J. Biomed. Mater. Res. 65A:447–453, 2003. Google Scholar
Hou, Q., D. W. Grijpma, and J. Feijen. Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials 24:1937–1947, 2003. Google Scholar
Hu, Y., D. W. Grainger, S. R. Winn, and J. O. Hollinger. Fabrication of poly(α-hydroxy acid) foam scaffolds using multiple solvent systems. J. Biomed. Mater. Res. 59:563–572, 2002. Google Scholar
Hull, C. W. Method for production of three-dimensional objects by stereolithography. United States Patent 4,929,402, 1990.
Hutmacher, D. W., T. Schantz., I. Zein., K. W. Ng, S. H. Teoh, and K. C. Tan. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. 55(2):203–216, 2001. Google Scholar
Hutmacher, D. W., S. H. Teoh, I. Zein., K. W. Ng, J. T. Schantz, and J. C. Leahy. Design and fabrication of a 3D scaffold for tissue engineering bone. In: Synthetic Bioabsorbable Polymers for Implants, ASTM STP 1396, edited by C. M. Agrawal, J. E. Parr, and S. T. Lin. West Conchohoden, PA: American Society for Testing and Materials, 2000, pp. 152–167. Google Scholar
Ishaug-Riley, S. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J. Biomed. Mater. Res. 36(1):17–28, 1997. Google Scholar
Ishaug-Riley, S., G. M. Crane-Kruger, M. J. Yaszemski, and A. G. Mikos. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 19(15):1405–1412, 1998. Google Scholar
Itälä, A., H. O. Ylänen, C. Ekholm., K. H. Karisson, and H. T. Aro. Pore diameter of more than 100 μm is not requisite for bone ingrowth in rabbits. J. Biomed. Mater. Res. 58:679–683, 2001. Google Scholar
Kim, B. S., and D. J. Mooney. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 16(5):224–230, 1998. Google Scholar
Kuboki, Y., Q. Jin., and H. Takita. Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J. Bone Joint Surg. 83-A(Supplement 1, Part 2):S1–105 to S1–115, 2001.
LeBaron, R. G., and K. A. Athanasiou. Ex vivo synthesis of articular cartilage. Biomaterials 21:2575–2587, 2000. Google Scholar
Lee, Y. M., Y. J. Seol, Y. T. Lim, S. Kim., S. B. Han, I. C. Rhyu, S. H. Baek, S. J. Heo, J. Y. Choi, P. R. Klokkevold, and C. P. Chung. Tissue-engineered growth of bone by marrow cell transplantation using porous calcium metaphosphate matrices. J. Biomed. Mater. Res. 54:216–223, 2001. Google Scholar
Levy, R. A., T. M. G. Chu, J. W. Halloran, S. E. Feinberg, and S. Hollister. CT-generated porous hydroxyapatite orbital floor prosthesis as a prototype bioimplant. AJNR Am. J. Neuroradiol. 18(8):1522–1525, 1997. Google Scholar
Li, S., J. R. De Wijn, J. Li., P. Layrolle., and K. De Groot. Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng. 9(3):535–548, 2003. Google Scholar
Li, S. H., J. R. De Wijn, P. Layrolle., and K. De Groot. Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. J. Biomed. Mater. Res. 61:109–120, 2002. Google Scholar
Li, W. J., C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60(4):613–621, 2002. Google Scholar
Li, W. J., K. G. Danielson, P. G. Alexander, and R. S. Tuan. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J. Biomed. Mater. Res. 67A(4):1105–1114, 2003. Google Scholar
Liao, C. J., C. F. Chen, J. H. Chen, S. F. Chiang, Y. J. Lin, and K. Y. Chang. Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J. Biomed. Mater. Res. 59:676–681, 2002. Google Scholar
Lin, A. S. P., T. H. Barrows, S. H. Cartmell, and R. E. Guldberg. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials 24:481–489, 2003. Google Scholar
Lu, S., W. F. Ramirez, and K. S. Anseth. Modeling and optimization of drug release from laminated polymer matrix devices. AIChE J. 44(7):1689–1696, 1998. Google Scholar
Ma, P. X., and J. W. Choi. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 7(1):23–33, 2001. Google Scholar
Ma, P. X., and R. Zhang. Microtubular architecture of biodegradable polymer scaffolds. J. Biomed. Mater. Res. 56:469–477, 2001. Google Scholar
Ma, P. X., and R. Zhang. Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res. 46(1):60–72, 1999. Google Scholar
Malaviya, P., and R. M. Nerem. Fluid-induced shear stress stimulates chondrocyte proliferation partially mediated via TGF-B1. Tissue Eng. 8(4):581–590, 2002. Google Scholar
Malda, J., J. Rouwkema., D. E. Martens, E. P. l. Comte, F. K. Kooy, J. Tramper., C. A. v. Blitterswijk, and J. Riesle. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: Measurement and modeling. Biotechnol. Bioeng. 86(1):9–18, 2004. Google Scholar
Mankani, M. H., S. A. Kuznetsov, B. Fowler., A. Kingman., and P. G. Robey. In vivo bone formation by human bone marrow stromal cells: Effect of carrier particle size and shape. Biotechnol. Bioeng. 72:96–107, 2001. Google Scholar
Maquet, V., S. Blacher., R. Pirard., J. P. Pirard, M. N. Vyakarnam, and R. Jerome. Preparation of macroporous biodegradable poly(L-lactide-co-ε-caprolactone) foams and characterization by mercury intrusion porosimetry, image analysis, and impedance spectroscopy. J. Biomed. Mater. Res. 66A:199–213, 2003. Google Scholar
Maspero, F. A., K. Ruffieux., B. Muller., and E. Wintermantel. Resorbable defect analog PLGA scaffolds using CO2 as solvent: Structural characterization. J. Biomed. Mater. Res. 62:89–98, 2002. Google Scholar
Matthews, J. A., G. E. Wnek, D. G. Simpson, and G. L. Bowlin. Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238, 2002. Google Scholar
Mooney, D. J., K. McNamara., D. Hern., J. P. Vacanti, and R. Langer. Stablized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials 17(2):115–124, 1996. Google Scholar
Murphy, C. L., and A. Sambanis. Effect of oxygen tension and alginate encapsulation on restoration of the differentiated phenotype of passaged chondrocytes. Tissue Eng. 7(6):791–803, 2001. Google Scholar
Murphy, W. L., R. G. Dennis, J. L. Kileny, and D. J. Mooney. Salt fusion: An approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Eng. 8(1):43–52, 2002. Google Scholar
Nam, Y. S., and T. G. Park. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J. Biomed. Mater. Res. 47:8–17, 1999. Google Scholar
Naumann, A., J. Aigner., R. Staudenmaier., M. Seemann., R. Bruening, K. H. Englmeier, G. Kadegge., A. Pavesio., E. Kastenbauer., and A. Berghaus. Clinical aspects and strategy for biomaterial engineering of an auricle based on three-dimensional stereolithography. Eur. Arch. Otorhinolaryngol. 260(10):568–575, 2003. Google Scholar
Oh, S. H., S. G. Kang, E. S. Kim, S. H. Cho, and J. H. Lee. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials 24:4011–4021, 2003. Google Scholar
Oliveira, J. F. D., P. F. De Aguiar, A. M. Rossi, and G. A. Soares. Effect of process parameters on the characteristics of porous calcium phosphate ceramics for bone tissue scaffolds. Artif. Organs 27(5):406–411, 2003. Google Scholar
Park, A., B. Wu., and L. G. Griffith. Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) substrates allowing regionally selective cell adhesion. J. Biomater. Sci. Polym. Ed. 9(2):89–110, 1998. Google Scholar
Peter, S. J., M. J. Miller, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos. Polymer concepts in tissue engineering. J. Biomed. Mater. Res. 43(4):422–427, 1998. Google Scholar
Petrov, N., and S. R. Pollack. Comparative analysis of diffusive and stress induced nutrient transport efficiency in the lacunar-canalicular system of osteons. Biorheology 40(1–3):347–353, 2003. Google Scholar
Pilliar, R. M., M. Filiaggi., J. D. Wells, M. D. Grynpas, and R. A. Kandel. Porous calcium polyphosphate scaffolds for bone substitute applications-in vitro characterization. Biomaterials 22:963–972, 2001. Google Scholar
Porter, N. L., R. M. Pilliar, and M. D. Grynpas. Fabrication of porous calcium polyphosphate implants by solid freeform fabrication: A study of processing parameters and in vitro degradation characteristics. J. Biomed. Mater. Res. 56(4):504–515, 2001. Google Scholar
Ramay, H. R., and M. Zhang. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials 24:3293–3302, 2003. Google Scholar
Ramay, H. R. R., and M. Zhang. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 25(21):5171–5180, 2004. Google Scholar
Reneker, D. H., and I. Chun. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223, 1996. Google Scholar
Rimell, J. T., and P. M. Marquis. Selective laser sintering of ultra high molecular weight polyethylene for clinical applications. J. Biomed. Mater. Res. 53(4):414–420, 2000. Google Scholar
Rodriguez-Lorenzo, L. M., M. Vallet-Regi, and J. M. F. Ferreira. Fabrication of porous hydroxyapatite bodies by a new direct consolidation method: Starch consolidation. J. Biomed. Mater. Res. 60:232–240, 2002. Google Scholar
Rodriguez-Lorenzo, L. M., M. Vallet-Regi, J. M. F. Ferreira, M. P. Ginebra, C. Aparicio., and J. A. Planell. Hydroxyapatite ceramic bodies with tailored mechanical properties for different applications. J. Biomed. Mater. Res. 60:159–166, 2002. Google Scholar
Rohner, D., D. W. Hutmacher, T. K. Cheng, M. Oberholzer., and B. Hammer. In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig. J. Biomed. Mater. Res. 66B(2):574–580, 2003. Google Scholar
Roy, T. D., J. L. Simon, J. L. Ricci, E. D. Rekow, V. P. Thompson, and J. R. Parsons. Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. J. Biomed. Mater. Res. 66A:283–291, 2003. Google Scholar
Roy, T. D., J. L. Simon, J. L. Ricci, E. D. Rekow, V. P. Thompson, and J. R. Parsons. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques. J. Biomed. Mater. Res. 67A:1228–1237, 2003. Google Scholar
Sachlos, E., and J. T. Czernuska. Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cell. Mater. 5:29–40, 2003. Google Scholar
Sachs, E., A. Curodeau., T. Fan., J. F. Bredt, M. Cima., and D. Brancazio. Three dimensional printing system. United States Patent 5,807,437, 1998.
Saini, S., and T. M. Wick. Concentric cylinder bioreactor for production of tissue engineered cartilage: Effect of seeding density and hydrodynamic loading on construct development. Biotechnol. Prog. 19(2):510–521, 2003. Google Scholar
Scheidegger, A. E. The Physics of Flow Through Porous Media. New York: Macmillan, 1957, pp. 236. Google Scholar
Sheridan, M. H., L. D. Shea, M. C. Peters, and D. J. Mooney. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J. Control. Release 64:91–102, 2000. Google Scholar
Sherwood, J. K., S. L. Riley, R. Palazzolo., S. C. Brown, D. C. Monkhouse, M. Coates., L. G. Griffith, L. K. Landeen, and A. Ratcliffe. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23:4739–4751, 2002. Google Scholar
Shishkovsky, I. V., E. Y. Tarasova, L. V. huravel, and A. L. Petrov. The synthesis of a biocomposite based on nickel titanium and hydroxyapatite under selective laser sintering conditions. Tech. Phys. Lett. 27(3):211–213, 2001. Google Scholar
Sikavitsas, V. I., G. N. Bancroft, and A. G. Mikos. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J. Biomed. Mater. Res. 62:136–148, 2002. Google Scholar
Sikavitsas, V. I., G. N. Bancroft, H. L. Holtorf, J. A. Jansen, and A. G. Mikos. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc. Natl Acad. Sci. USA 100(25):14683–14688, 2003. Google Scholar
Simon, J. L., T. D. Roy, J. R. Parsons, E. D. Rekow, V. P. Thompson, J. Kemnitzer., and J. L. Ricci. Engineered cellular response to scaffold architecture in a rabbit trephine defect. J. Biomed. Mater. Res. 66A(2):275–282, 2003. Google Scholar
Singhal, A. R., C. M. Agrawal, and K. A. Athanasiou. Salient degradation features of a 50:50 PLA/PGA scaffold for tissue engineering. Tissue Eng. 2(3):197–207, 1996. Google Scholar
Sittinger, M., C. Perka., O. Schultz., T. Haupl., and G. R. Burmester. Joint cartilage regeneration by tissue engineering. Z Rheumatol. 58(3):130–135, 1999. Google Scholar
Sodian, R., M. Loebe., A. Hein., D. P. Martin, S. P. Hoerstrup, E. V. Potapov, H. Hausmann., T. Lueth., and R. Hetzer. Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO J. 48(1):12–16, 2002. Google Scholar
Spaans, C. J., V. W. Belgraver, O. Rienstra., J. H. de Groot, R. P. H. Veth, and A. J. Pennings. Solvent-free fabrication of micro-porous polyurethane amide and polyurethane-urea scaffolds for repair and replacement of the knee-joint meniscus. Biomaterials 21:2453–2460, 2000. Google Scholar
Suh, S. W., J. Y. Shin, J. Kim., J. Kim., C. H. Beak, D. I. Kim, H. Kim., S. S. Jeon, and I.-W. Choo. Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique. ASAIO J. 48:460–464, 2002. Google Scholar
Taboas, J. M., R. D. Maddox, P. H. Krebsbach, and S. J. Hollister. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer–ceramic scaffolds. Biomaterials 24:181–194, 2003. Google Scholar
Tan, K. H., C. K. Chua, K. F. Leong, C. M. Cheah, P. Cheang., M. S. A. Bakar, and S. W. Cha. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials 24(18):3115–3123, 2003. Google Scholar
Thomson, R. C., M. J. Yaszemski, J. M. Powers, and A. G. Mikos. Hydroxyapatite fiber reinforced poly(α-hydroxy ester) foams for bone regeneration. Biomaterials 19:1935–1943, 1998. Google Scholar
Tienen, T. v., R. Heijkants., P. Buma., J. de Groot, A. Pennings., and R. Verth. Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes. Biomaterials 23(8):1731–1738, 2002. Google Scholar
Vacanti, J. P. Beyond Transplantation. Third Annual Samuel Jason Mixter Lecture. Arch. Surg. 123(5):545–549, 1988. Google Scholar
Vacanti, J. P., M. A. Morse, W. M. Saltzman, A. J. Domb, A. Perez-Atayde, R. Langer., C. L. Mazzoni, and C. Breuer. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J. Pediatr. Surg. 23:3–9, 1988. Google Scholar
Vehof, J. W. M., J. P. Fisher, D. Dean., J. P. C. M. Van der Waerden, P. H. M. Spauwen, A. G. Mikos, and J. A. Jansen. Bone formation in transforming growth factor β-1-coated porous poly(propylene fumarate) scaffolds. J. Biomed. Mater. Res. 60:241–251, 2002. Google Scholar
Vunjak-Novakovic, G., L. E. Freed, R. Biron., and R. Langer. Effects of mixing on the composition and morphology of tissue-engineered cartilage. AIChE J. 42(3):850–860, 1996. Google Scholar
Vunjak-Novakovic, G., I. Martin., B. Obradovic., S. Treppo., A. J. Grodzinsky, R. Langer., and L. E. Freed. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineering cartilage. J. Orthop. Res. 17(1):130–138, 1999. Google Scholar
Vunjak-Novakovic, G., B. Obradovic., I. Martin., P. M. Bursac, R. Langer., and L. E. Freed. Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol. Prog. 14(2):193–202, 1998. Google Scholar
Whang, K., T. K. Goldstick, and K. E. Healy. A biodegradable polymer scaffold for delivery of osteotropic factors. Biomaterials 21:2545–2551, 2000. Google Scholar
Whang, K., K. E. Healy, D. R. Elenz, E. K. Nam, D. C. Tsai, C. H. Thomas, G. W. Nuber, F. H. Glorieux, R. Travers., and S. M. Sprague. Engineering bone regeneration with bioabsorable scaffolds with novel architecture. Tissue Eng. 5(1):35–51, 1999. Google Scholar
Widmer, M. S., P. K. Gupta, L. Lu., R. K. Meszlenyi, G. R. D. Evans, K. Brandt., T. Savel., A. Gurlek Jr., C. W. P., and A. G. Mikos. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials 19:1945–1955, 1998.
Wintermantel, E., J. Mayer., J. Blum., K. L. Eckert, P. Luscher., and M. Mathey. Tissue engineering scaffolds using superstructures. Biomaterials 17:83–91, 1996. Google Scholar
Wu, B. M., S. W. Borland, R. A. Giordano, L. G. Cima, E. M. Sachs, and M. J. Cima. Solid free-form fabrication of drug delivery devices. J. Control. Release 40(1–2):77–87, 1996. Google Scholar
Yang, J., G. Shi., J. Bei., S. Wang., Y. Cao., Q. Shang., G. Yang., and W. Wang. Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J. Biomed. Mater. Res. 62:438–446, 2002. Google Scholar
Yang, S., K. F. Leong, Z. Du., and C. K. Chua. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8(1):1–11, 2002. Google Scholar
Yang, S., K. F. Leong, Z. Du., and C. K. Chua. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7(6):679–689, 2001. Google Scholar
Yoon, J. J., and T. G. Park. Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. J. Biomed. Mater. Res. 55:401–408, 2001. Google Scholar
Yoshimoto, H., Y. M. Shin, H. Terai., and J. P. Vacanti. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12):2077–2082, 2003. Google Scholar
Zein, I., D. W. Hutmacher, K. C. Tan, and S. H. Teoh. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185, 2002. Google Scholar
Zeltinger, J., J. K. Sherwood, D. A. Graham, R. Mueller., and L. G. Griffith. Effect of pore size and void fraction on cellular adhesion proliferation, and matrix deposition. Tissue Eng. 7(5):557–572, 2001. Google Scholar
Zhang, R., and P. X. Ma. Poly(α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J. Biomed. Mater. Res. 44(4):446–455, 1999. Google Scholar
Zhao, F., Y. Yin., W. W. Lu, J. C. Leong, W. Zhang., J. Zhang., M. Zhang., and K. Yao. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chtosan-gelatin network composite scaffolds. Biomaterials 23:3227–3234, 2002. Google Scholar