A Digital Image-Based Method for Computational Tissue Fate Mapping During Early Avian Morphogenesis (original) (raw)

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Beloussov, L., J. Dorfman, and V. Cherdantzev. Mechanical stresses and morphological patterns in amphibian embryos. J. Embryol. Exp. Morphol. 34(3):559–574, 1975.
    CAS PubMed Google Scholar
  2. Czirók, A., B. Rongish, and C. Little. Extracellular matrix dynamics during vertebrate axis formation. Dev. Biol. 268:111–122, 2004.
    Article PubMed Google Scholar
  3. Czirók, A., P. Rupp, B. R.ongish, and C. Little. Multi-field 3D scanning light microscopy of early embryogenesis. J. Microsc. 206:209–217, 2002.
    Article PubMed MathSciNet Google Scholar
  4. Elul, T., M. Koehl, and R. Keller. Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos. Dev. Biol. 191(2):243–258, 1997.
    Article CAS PubMed Google Scholar
  5. Filla, M. B., A. Czirók, E. A. Zamir, C. D. Little, T. J. Cheuvront, and B. J. Rongish. Dynamic imaging of cell, extracellular matrix, and tissue movements during avian vertebral axis patterning. Birth Defects Res Part C Embryo Today 72(3):267–276, 2004.
    Article CAS Google Scholar
  6. Eraser, S., and R. Harland. The molecular metamorphosis of experimental embryology. Cell 100:41–55, 2000.
    Article CAS PubMed Google Scholar
  7. Gilbert, S. Developmental Biology, 7th ed., Sunderland, MA: Sinauer Associates, 2003.
    Google Scholar
  8. Glickman, N. S., C. B. Kimmel, M. A. Jones, and R. J. Adams. Shaping the zebrafish notochord. Development 130(5):873–887, 2003.
    Article CAS PubMed Google Scholar
  9. Hamburger, V., and H. Hamilton. A Series of Normal Stages in the Development of the Chick Embryo. J. Morphol. 88:49–92, 1951.
    Article Google Scholar
  10. Helmke, B., A. Rosen, and P. Davies. Mapping mechanical strain of an endogenous ctyoskeletal network in living endothelial cells. Biophys. J. 84:2691–2699, 2003.
    CAS PubMed Google Scholar
  11. Jacob, M., and M. Unser. Design of Steerable Filters for Feature Detection Using Canny-Like Criteria. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(8):1007–1019, 2004.
    Article PubMed Google Scholar
  12. Keller, R., L. Davidson, and D. Shook. How we are shaped: The biomechanics of gastrulation. Differentiation 71:171–205, 2003.
    Article PubMed Google Scholar
  13. Keller, R. Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298(5600):1950–1954, 2002.
    Article CAS PubMed Google Scholar
  14. Keller, R., L. Davidson, A. Edlund, T. Elul, M. Ezin, D. Shook, and P. Skoglund. Mechanisms of convergence and extension by cell intercalation. Philos Trans R Soc Lond B Biol Sci 355(1399):897–922, 2000.
    Article CAS PubMed Google Scholar
  15. Little, C., and C. Drake. Whole-mount immunolabeling of embryos by microinjection. Meth. Mol. Biol. 135:183–189, 2000.
    CAS Google Scholar
  16. Meijering, E., J. Wiro, and M. Viergever. quantitative evaluation of convolution-based methods for medical image interpolation. Med. Image Anal. 5:111–126, 2001.
    Article CAS PubMed Google Scholar
  17. Persson, P., and G. Strang. A simple mesh generator in MATLAB. SIAM Rev. 46:329–345, 2004.
    MathSciNet Google Scholar
  18. Raffel, M., C. Willert, and J. Kompenhans. Particle Image Velocimetry, Berlin: Springer-Verlag, 1998.
  19. Rongish, B., C. Drake, W. Argraves, and C. Little. Identification of the developmental marker, JB3-Antigen, as Fibrillin-2 and its de novo organization into embryonic microfibrous arrays. Dev. Dyn. 212:461–471, 1998.
    Article CAS PubMed Google Scholar
  20. Rupp, P., A. Czirók, and C. Little. αvβ3 integrin-dependent endothelial cell dynamics in vivo. Development 131:2887–2897, 2004.
    Article CAS PubMed Google Scholar
  21. Rupp, P., A. Czirók, and C. Little. Novel approaches for the study of vascular assembly and morphogenesis in avian embryos. Trends Cardiovasc. Med. 13:283–288, 2003a.
    Article Google Scholar
  22. Rupp, P., B. Rongish, A. Czirók, and C. Little. Culturing of avian embryos for time-lapse imaging. Biotechniques 34:274–278, 2003b.
    CAS Google Scholar
  23. Scarano, F. Iterative image deformation methods in PIV. Meas. Sci. Technol. 13:1–19, 2002.
    Article Google Scholar
  24. Vanni, S., C. Lagerholm, C. Otey, D. Taylor, and F. Lanni. Internet-based image analysis quantifies contractile behavior of individual fibroblasts inside model tissue. Biophys. J. 84:2715–2727, 2003.
    CAS PubMed Google Scholar
  25. Wang, C., J. Deng, G. Ateshian, and C. Hung. An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression. J. Biomech. Eng. 5:557–567, 2002.
    Article Google Scholar
  26. Zamir, E. A., and L. A. Taber. On the effects of residual stress in microindentation tests of soft tissue structures. J. Biomech. Eng. 126(2):276–283, 2004.
    Article PubMed Google Scholar

Download references