Fusion of Concentrically Layered Tubular Tissue Constructs Increases Burst Strength (original) (raw)

References

  1. American Heart Association. Cardiovascular Disease Statistics, 2009. www.americanheart.org/downloadable/heart/1240250946756LS-1982%20Heart%20and%20Stroke%20Update.042009.pdf.
  2. Auger, F. A., P. D’Orleans-Juste, and L. Germain. Adventitia contribution to vascular contraction: hints provided by tissue-engineered substitutes. Cardiovasc. Res. 75:669–678, 2007.
    Article PubMed CAS Google Scholar
  3. Auger, F. A., M. Remy-Zolghadri, G. Grenier, and L. Germain. A truly new approach for tissue engineering: the LOEX self-assembly technique_._ Ernst Schering Res. Found. Workshop 35:73–88, 2002.
    Google Scholar
  4. Dahl, S. L., C. Rhim, Y. C. Song, and L. E. Niklason. Mechanical properties and compositions of tissue engineered and native arteries. Ann. Biomed. Eng. 35:348–355, 2007.
    Article PubMed Google Scholar
  5. Deutsch, M., J. Meinhart, T. Fischlein, P. Preiss, and P. Zilla. Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: a 9-year experience. Surgery 126:847–855, 1999.
    PubMed CAS Google Scholar
  6. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, pp. 2–22, 1993.
  7. Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J. Biomed. Mater. Res. 60:607–612, 2002.
    Article PubMed CAS Google Scholar
  8. Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. A fibrin-based arterial media equivalent. J. Biomed. Mater. Res. A 66:550–561, 2003.
    Article PubMed CAS Google Scholar
  9. Grouf, J. L., A. M. Throm, J. L. Balestrini, K. A. Bush, and K. L. Billiar. Differential effects of EGF and TGF-beta1 on fibroblast activity in fibrin-based tissue equivalents. Tissue Eng. 13:799–807, 2007.
    Article PubMed CAS Google Scholar
  10. Hansen, M. E., K. Yucel, J. Megerman, G. J. L’Italien, W. M. Abbott, and A. C. Waltmaff. In vivo determination of human arterial compliance: preliminary investigation of a new technique_._ Cardiovasc. Intervent. Radiol. 17:22–26, 1994.
    Google Scholar
  11. Isenberg, B. C., C. Williams, and R. T. Tranquillo. Endothelialization and flow conditioning of fibrin-based media-equivalents. Ann. Biomed. Eng. 34:971–985, 2006.
    Article PubMed Google Scholar
  12. Isenberg, B. C., C. Williams, and R. T. Tranquillo. Small-diameter artificial arteries engineered in vitro. Circ. Res. 98:25–35, 2006.
    Article PubMed CAS Google Scholar
  13. Iwasaki, K., K. Kojima, S. Kodama, A. C. Paz, M. Chambers, M. Umezu, and C. A. Vacanti. Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor. Circulation 118:S52–S57, 2008.
    Article PubMed CAS Google Scholar
  14. Jakab, K., A. Neagu, V. Mironov, R. R. Markwald, and G. Forgacs. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Natl Acad. Sci. USA 101:2864–2869, 2004.
    Article PubMed CAS Google Scholar
  15. Jakab, K., C. Norotte, B. Damon, F. Marga, A. Neagu, C. L. Besch-Williford, A. Kachurin, K. H. Church, H. Park, V. Mironov, R. Markwald, G. Vunjak-Novakovic, and G. Forgacs. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. Part A 14:413–421, 2008.
    Article PubMed CAS Google Scholar
  16. Kim, Y. J., R. L. Sah, J. Y. Doong, and A. J. Grodzinsky. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174:168–176, 1988.
    Article PubMed CAS Google Scholar
  17. Konig, G., T. McAllister, N. Dusserre, S. Garrido, C. Iyican, A. Marini, A. Fiorillo, H. Avila, W. Wystrychowski, K. Zagalski, M. Maruszewski, A. Jones, L. Cierpka, L. de la Fuente, and N. L’Heureux. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30(8):1542–1550, 2009 (Epub 2008 Dec 25).
    Article PubMed CAS Google Scholar
  18. L’Heureux, N., N. Dusserre, G. Konig, B. Victor, P. Keire, T. N. Wight, N. A. Chronos, A. E. Kyles, C. R. Gregory, G. Hoyt, R. C. Robbins, and T. N. McAllister. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. 12:361–365, 2006.
    Article PubMed CAS Google Scholar
  19. L’Heureux, N., N. Dusserre, A. Marini, S. Garrido, L. de la Fuente, and T. McAllister. Technology insight: the evolution of tissue-engineered vascular grafts—from research to clinical practice. Nat. Clin. Pract. Cardiovasc. Med. 4:389–395, 2007.
    Article PubMed Google Scholar
  20. L’Heureux, N., T. N. McAllister, and L. M. de la Fuente. Tissue-engineered blood vessel for adult arterial revascularization. N. Engl. J. Med. 357:1451–1453, 2007.
    Article PubMed Google Scholar
  21. L’Heureux, N., S. Paquet, R. Labbe, L. Germain, and F. A. Auger. A completely biological tissue-engineered human blood vessel. FASEB J. 12:47–56, 1998.
    PubMed Google Scholar
  22. Lu, X., and Y. Kang. Cell fusion as a hidden force in tumor progression. Cancer Res. 69:8536–8539, 2009.
    Article PubMed CAS Google Scholar
  23. McAllister, T. N., M. Maruszewski, S. A. Garrido, W. Wystrychowski, N. Dusserre, A. Marini, K. Zagalski, A. Fiorillo, H. Avila, X. Manglano, J. Antonelli, A. Kocher, M. Zembala, L. Cierpka, L. M. de la Fuente, and N. L’Heureux. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373:1440–1446, 2009.
    Article PubMed Google Scholar
  24. Metcalfe, A. D., and M. W. Ferguson. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface 4:413–437, 2007.
    Article PubMed CAS Google Scholar
  25. Neidert, M. R., E. S. Lee, T. R. Oegema, and R. T. Tranquillo. Enhanced fibrin remodeling in vitro with TGF-beta1, insulin and plasmin for improved tissue-equivalents. Biomaterials 23:3717–3731, 2002.
    Article PubMed CAS Google Scholar
  26. Nerem, R. M. Tissue engineering a blood vessel substitute: the role of biomechanics. Yonsei Med. J. 41:735–739, 2000.
    PubMed CAS Google Scholar
  27. Nieponice, A., L. Soletti, J. Guan, B. M. Deasy, J. Huard, W. R. Wagner, and D. A. Vorp. Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique_._ Biomaterials 29:825–833, 2008.
    Google Scholar
  28. O’Cearbhaill, E., M. Murphy, F. Barry, P. McHugh, and V. Barron. Behavior of human mesenchymal stem cells in fibrin-based vascular tissue engineering constructs. Ann. Biomed. Eng., 2010 (Epub ahead of Print).
  29. Opitz, F., K. Schenke-Layland, T. U. Cohnert, B. Starcher, K. J. Halbhuber, D. P. Martin, and U. A. Stock. Tissue engineering of aortic tissue: dire consequence of suboptimal elastic fiber synthesis in vivo. Cardiovasc. Res. 63:719–730, 2004.
    Article PubMed CAS Google Scholar
  30. Perez-Pomares, J. M., and R. A. Foty. Tissue fusion and cell sorting in embryonic development and disease: biomedical implications. Bioessays 28:809–821, 2006.
    Article PubMed Google Scholar
  31. Ravi, S., Z. Qu, and E. L. Chaikof. Polymeric materials for tissue engineering of arterial substitutes. Vascular 17(Suppl. 1):S45–S54, 2009.
    PubMed Google Scholar
  32. Stegemann, H., and K. Stalder. Determination of hydroxyproline. Clin. Chim. Acta 18:267–273, 1967.
    Article PubMed CAS Google Scholar
  33. Syedain, Z. H., J. S. Weinberg, and R. T. Tranquillo. Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue. Proc. Natl Acad. Sci. USA 105:6537–6542, 2008.
    Article PubMed Google Scholar
  34. Thompson, M. M., J. S. Budd, S. L. Eady, R. F. James, and P. R. Bell. Effect of pulsatile shear stress on endothelial attachment to native vascular surfaces. Br. J. Surg. 81:1121–1127, 1994.
    Article PubMed CAS Google Scholar
  35. Tower, T. T., M. R. Neidert, and R. T. Tranquillo. Fiber alignment imaging during mechanical testing of soft tissues. Ann. Biomed. Eng. 30:1221–1233, 2002.
    Article PubMed Google Scholar
  36. Tranquillo, R. T. The tissue-engineered small-diameter artery. Ann. N. Y. Acad. Sci. 961:251–254, 2002.
    Article PubMed Google Scholar
  37. Tschoeke, B., T. C. Flanagan, M. Harwoko, S. Koch, T. Deichmann, V. Ellå, J. S. Sachweh, M. Kellomåki, T. Gries, T. Schmitz-Rode, and S. Jockenhoevel. Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold. Tissue Eng. Part A 15(8):1909–1918, 2009.
    Google Scholar
  38. van Andel, C. J., P. V. Pistecky, and C. Borst. Mechanical properties of porcine and human arteries: implications for coronary anastomotic connectors. Ann. Thorac. Surg. 76:58–64, 2003 (discussion 64-5).
    Article PubMed Google Scholar
  39. Voorhees, Jr., A. B., A. Jaretzki, 3rd, and A. H. Blakemore. The use of tubes constructed from vinyon “N” cloth in bridging arterial defects. Ann. Surg. 135:332–336, 1952.
    Article PubMed Google Scholar
  40. Weinberg, C. B., and E. Bell. A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400, 1986.
    Article PubMed CAS Google Scholar
  41. Woessner, Jr., J. F. The determination of hydroxyproline in tissue and protein samples containing small proportions of this amino acid. Arch. Biochem. Biophys. 93:440–447, 1961.
    Article PubMed CAS Google Scholar
  42. Yao, L., J. Liu, and S. T. Andreadis. Composite fibrin scaffolds increase mechanical strength and preserve contractility of tissue engineered blood vessels. Pharm. Res. 25:1212–1221, 2008.
    Article PubMed CAS Google Scholar

Download references