Auger, F. A., P. D’Orleans-Juste, and L. Germain. Adventitia contribution to vascular contraction: hints provided by tissue-engineered substitutes. Cardiovasc. Res. 75:669–678, 2007. ArticlePubMedCAS Google Scholar
Auger, F. A., M. Remy-Zolghadri, G. Grenier, and L. Germain. A truly new approach for tissue engineering: the LOEX self-assembly technique_._ Ernst Schering Res. Found. Workshop 35:73–88, 2002. Google Scholar
Dahl, S. L., C. Rhim, Y. C. Song, and L. E. Niklason. Mechanical properties and compositions of tissue engineered and native arteries. Ann. Biomed. Eng. 35:348–355, 2007. ArticlePubMed Google Scholar
Deutsch, M., J. Meinhart, T. Fischlein, P. Preiss, and P. Zilla. Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: a 9-year experience. Surgery 126:847–855, 1999. PubMedCAS Google Scholar
Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, pp. 2–22, 1993.
Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J. Biomed. Mater. Res. 60:607–612, 2002. ArticlePubMedCAS Google Scholar
Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. A fibrin-based arterial media equivalent. J. Biomed. Mater. Res. A 66:550–561, 2003. ArticlePubMedCAS Google Scholar
Grouf, J. L., A. M. Throm, J. L. Balestrini, K. A. Bush, and K. L. Billiar. Differential effects of EGF and TGF-beta1 on fibroblast activity in fibrin-based tissue equivalents. Tissue Eng. 13:799–807, 2007. ArticlePubMedCAS Google Scholar
Hansen, M. E., K. Yucel, J. Megerman, G. J. L’Italien, W. M. Abbott, and A. C. Waltmaff. In vivo determination of human arterial compliance: preliminary investigation of a new technique_._ Cardiovasc. Intervent. Radiol. 17:22–26, 1994. Google Scholar
Isenberg, B. C., C. Williams, and R. T. Tranquillo. Endothelialization and flow conditioning of fibrin-based media-equivalents. Ann. Biomed. Eng. 34:971–985, 2006. ArticlePubMed Google Scholar
Isenberg, B. C., C. Williams, and R. T. Tranquillo. Small-diameter artificial arteries engineered in vitro. Circ. Res. 98:25–35, 2006. ArticlePubMedCAS Google Scholar
Iwasaki, K., K. Kojima, S. Kodama, A. C. Paz, M. Chambers, M. Umezu, and C. A. Vacanti. Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor. Circulation 118:S52–S57, 2008. ArticlePubMedCAS Google Scholar
Jakab, K., A. Neagu, V. Mironov, R. R. Markwald, and G. Forgacs. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Natl Acad. Sci. USA 101:2864–2869, 2004. ArticlePubMedCAS Google Scholar
Jakab, K., C. Norotte, B. Damon, F. Marga, A. Neagu, C. L. Besch-Williford, A. Kachurin, K. H. Church, H. Park, V. Mironov, R. Markwald, G. Vunjak-Novakovic, and G. Forgacs. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. Part A 14:413–421, 2008. ArticlePubMedCAS Google Scholar
Kim, Y. J., R. L. Sah, J. Y. Doong, and A. J. Grodzinsky. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174:168–176, 1988. ArticlePubMedCAS Google Scholar
Konig, G., T. McAllister, N. Dusserre, S. Garrido, C. Iyican, A. Marini, A. Fiorillo, H. Avila, W. Wystrychowski, K. Zagalski, M. Maruszewski, A. Jones, L. Cierpka, L. de la Fuente, and N. L’Heureux. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30(8):1542–1550, 2009 (Epub 2008 Dec 25). ArticlePubMedCAS Google Scholar
L’Heureux, N., N. Dusserre, G. Konig, B. Victor, P. Keire, T. N. Wight, N. A. Chronos, A. E. Kyles, C. R. Gregory, G. Hoyt, R. C. Robbins, and T. N. McAllister. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. 12:361–365, 2006. ArticlePubMedCAS Google Scholar
L’Heureux, N., N. Dusserre, A. Marini, S. Garrido, L. de la Fuente, and T. McAllister. Technology insight: the evolution of tissue-engineered vascular grafts—from research to clinical practice. Nat. Clin. Pract. Cardiovasc. Med. 4:389–395, 2007. ArticlePubMed Google Scholar
L’Heureux, N., T. N. McAllister, and L. M. de la Fuente. Tissue-engineered blood vessel for adult arterial revascularization. N. Engl. J. Med. 357:1451–1453, 2007. ArticlePubMed Google Scholar
L’Heureux, N., S. Paquet, R. Labbe, L. Germain, and F. A. Auger. A completely biological tissue-engineered human blood vessel. FASEB J. 12:47–56, 1998. PubMed Google Scholar
Lu, X., and Y. Kang. Cell fusion as a hidden force in tumor progression. Cancer Res. 69:8536–8539, 2009. ArticlePubMedCAS Google Scholar
McAllister, T. N., M. Maruszewski, S. A. Garrido, W. Wystrychowski, N. Dusserre, A. Marini, K. Zagalski, A. Fiorillo, H. Avila, X. Manglano, J. Antonelli, A. Kocher, M. Zembala, L. Cierpka, L. M. de la Fuente, and N. L’Heureux. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373:1440–1446, 2009. ArticlePubMed Google Scholar
Metcalfe, A. D., and M. W. Ferguson. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface 4:413–437, 2007. ArticlePubMedCAS Google Scholar
Neidert, M. R., E. S. Lee, T. R. Oegema, and R. T. Tranquillo. Enhanced fibrin remodeling in vitro with TGF-beta1, insulin and plasmin for improved tissue-equivalents. Biomaterials 23:3717–3731, 2002. ArticlePubMedCAS Google Scholar
Nerem, R. M. Tissue engineering a blood vessel substitute: the role of biomechanics. Yonsei Med. J. 41:735–739, 2000. PubMedCAS Google Scholar
Nieponice, A., L. Soletti, J. Guan, B. M. Deasy, J. Huard, W. R. Wagner, and D. A. Vorp. Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique_._ Biomaterials 29:825–833, 2008. Google Scholar
O’Cearbhaill, E., M. Murphy, F. Barry, P. McHugh, and V. Barron. Behavior of human mesenchymal stem cells in fibrin-based vascular tissue engineering constructs. Ann. Biomed. Eng., 2010 (Epub ahead of Print).
Opitz, F., K. Schenke-Layland, T. U. Cohnert, B. Starcher, K. J. Halbhuber, D. P. Martin, and U. A. Stock. Tissue engineering of aortic tissue: dire consequence of suboptimal elastic fiber synthesis in vivo. Cardiovasc. Res. 63:719–730, 2004. ArticlePubMedCAS Google Scholar
Perez-Pomares, J. M., and R. A. Foty. Tissue fusion and cell sorting in embryonic development and disease: biomedical implications. Bioessays 28:809–821, 2006. ArticlePubMed Google Scholar
Ravi, S., Z. Qu, and E. L. Chaikof. Polymeric materials for tissue engineering of arterial substitutes. Vascular 17(Suppl. 1):S45–S54, 2009. PubMed Google Scholar
Stegemann, H., and K. Stalder. Determination of hydroxyproline. Clin. Chim. Acta 18:267–273, 1967. ArticlePubMedCAS Google Scholar
Syedain, Z. H., J. S. Weinberg, and R. T. Tranquillo. Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue. Proc. Natl Acad. Sci. USA 105:6537–6542, 2008. ArticlePubMed Google Scholar
Thompson, M. M., J. S. Budd, S. L. Eady, R. F. James, and P. R. Bell. Effect of pulsatile shear stress on endothelial attachment to native vascular surfaces. Br. J. Surg. 81:1121–1127, 1994. ArticlePubMedCAS Google Scholar
Tower, T. T., M. R. Neidert, and R. T. Tranquillo. Fiber alignment imaging during mechanical testing of soft tissues. Ann. Biomed. Eng. 30:1221–1233, 2002. ArticlePubMed Google Scholar
Tranquillo, R. T. The tissue-engineered small-diameter artery. Ann. N. Y. Acad. Sci. 961:251–254, 2002. ArticlePubMed Google Scholar
Tschoeke, B., T. C. Flanagan, M. Harwoko, S. Koch, T. Deichmann, V. Ellå, J. S. Sachweh, M. Kellomåki, T. Gries, T. Schmitz-Rode, and S. Jockenhoevel. Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold. Tissue Eng. Part A 15(8):1909–1918, 2009. Google Scholar
van Andel, C. J., P. V. Pistecky, and C. Borst. Mechanical properties of porcine and human arteries: implications for coronary anastomotic connectors. Ann. Thorac. Surg. 76:58–64, 2003 (discussion 64-5). ArticlePubMed Google Scholar
Voorhees, Jr., A. B., A. Jaretzki, 3rd, and A. H. Blakemore. The use of tubes constructed from vinyon “N” cloth in bridging arterial defects. Ann. Surg. 135:332–336, 1952. ArticlePubMed Google Scholar
Weinberg, C. B., and E. Bell. A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400, 1986. ArticlePubMedCAS Google Scholar
Woessner, Jr., J. F. The determination of hydroxyproline in tissue and protein samples containing small proportions of this amino acid. Arch. Biochem. Biophys. 93:440–447, 1961. ArticlePubMedCAS Google Scholar
Yao, L., J. Liu, and S. T. Andreadis. Composite fibrin scaffolds increase mechanical strength and preserve contractility of tissue engineered blood vessels. Pharm. Res. 25:1212–1221, 2008. ArticlePubMedCAS Google Scholar