Mechanisms of adaptive angiogenesis to tissue hypoxia (original) (raw)
Smith LM, Golub AS, Pittman RN (2002) Interstitial PO(2) determination by phosphorescence quenching microscopy. Microcirculation 9(5):389–395 PubMed Google Scholar
Matschke K, Pfeiffer S, Mrowietz C et al (2005) Influence of ventricular pacing on myocardial oxygen tension. Microvasc Res 70(1–2):97–101 PubMedCAS Google Scholar
Goetze JP, Gore A, Moller CH et al (2004) Acute myocardial hypoxia increases BNP gene expression. Faseb J 18(15):1928–1930 PubMedCAS Google Scholar
Maltepe E, Simon MC (1998) Oxygen, genes, and development: an analysis of the role of hypoxic gene regulation during murine vascular development. J Mol Med 76(6):391–401 PubMedCAS Google Scholar
Semenza GL (1998) Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 8(5):588–594 PubMedCAS Google Scholar
Elson DA, Ryan HE, Snow JW et al (2000) Coordinate up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res 60(21):6189–6195 PubMedCAS Google Scholar
Lee SH, Wolf PL, Escudero R et al (2000) Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342(9):626–633 PubMedCAS Google Scholar
Kelly BD, Hackett SF, Hirota K et al (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 93(11):1074–1081 PubMedCAS Google Scholar
Semenza GL (2007) Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem 102(4):840–847 PubMedCAS Google Scholar
Hirota K, Semenza GL (2006) Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 59(1):15–26 PubMed Google Scholar
Hickey MM, Simon MC (2006) Regulation of angiogenesis by hypoxia and hypoxia-inducible factors. Curr Top Dev Biol 76:217–257 PubMedCAS Google Scholar
Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9(6):677–684 PubMedCAS Google Scholar
Maxwell PH, Ratcliffe PJ (2002) Oxygen sensors and angiogenesis. Semin Cell Dev Biol 13(1):29–37 PubMedCAS Google Scholar
Wood SM, Gleadle JM, Pugh CW et al (1996) The role of the aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression. Studies in ARNT-deficient cells. J Biol Chem 271(25):15117–15123 PubMedCAS Google Scholar
Wang GL, Jiang BH, Rue EA et al (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92(12):5510–5514 PubMedCAS Google Scholar
Wiesener MS, Turley H, Allen WE et al (1998) Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood 92(7):2260–2268 PubMedCAS Google Scholar
Heidbreder M, Frohlich F, Johren O et al (2003) Hypoxia rapidly activates HIF-3alpha mRNA expression. Faseb J 17(11):1541–1543 PubMedCAS Google Scholar
Li QF, Wang XR, Yang YW et al (2006) Hypoxia upregulates hypoxia inducible factor (HIF)-3alpha expression in lung epithelial cells: characterization and comparison with HIF-1alpha. Cell Res 16(6):548–558 PubMedCAS Google Scholar
Pugh CW, O’Rourke JF, Nagao M et al (1997) Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem 272(17):11205–11214 PubMedCAS Google Scholar
Reisz-Porszasz S, Probst MR, Fukunaga BN et al (1994) Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT). Mol Cell Biol 14(9):6075–6086 PubMedCAS Google Scholar
Sekine H, Mimura J, Yamamoto M et al (2006) Unique and overlapping transcriptional roles of arylhydrocarbon receptor nuclear translocator (Arnt) and Arnt2 in xenobiotic and hypoxic responses. J Biol Chem 281(49):37507–37516 PubMedCAS Google Scholar
Huang LE, Gu J, Schau M et al (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2–dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95(14):7987–7992 PubMedCAS Google Scholar
Maxwell PH, Wiesener MS, Chang GW et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275 PubMedCAS Google Scholar
Jaakkola P, Mole DR, Tian YM et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472 PubMedCAS Google Scholar
Epstein AC, Gleadle JM, McNeill LA et al (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107(1):43–54 PubMedCAS Google Scholar
Ivan M, Haberberger T, Gervasi DC et al (2002) Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci USA 99(21):13459–13464 PubMedCAS Google Scholar
Berra E, Benizri E, Ginouves A et al (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. Embo J 22(16):4082–4090 PubMedCAS Google Scholar
Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294(5545):1337–1340 PubMedCAS Google Scholar
O’Rourke JF, Tian YM, Ratcliffe PJ et al (1999) Oxygen-regulated and transactivating domains in endothelial PAS protein 1: comparison with hypoxia-inducible factor-1alpha. J Biol Chem 274(4):2060–2071 PubMedCAS Google Scholar
Kallio PJ, Wilson WJ, O’Brien S et al (1999) Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem 274(10):6519–6525 PubMedCAS Google Scholar
Ema M, Taya S, Yokotani N et al (1997) A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94(9):4273–4278 PubMedCAS Google Scholar
Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11(1):72–82 PubMedCAS Google Scholar
Bracken CP, Fedele AO, Linke S et al (2006) Cell-specific regulation of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha stabilization and transactivation in a graded oxygen environment. J Biol Chem 281(32):22575–22585 PubMedCAS Google Scholar
Uchida T, Rossignol F, Matthay MA et al (2004) Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha. J Biol Chem 279(15):14871–14878 PubMedCAS Google Scholar
Takahashi R, Kobayashi C, Kondo Y et al (2004) Subcellular localization and regulation of hypoxia-inducible factor-2alpha in vascular endothelial cells. Biochem Biophys Res Commun 317(1):84–91 PubMedCAS Google Scholar
Park SK, Dadak AM, Haase VH et al (2003) Hypoxia-induced gene expression occurs solely through the action of hypoxia-inducible factor 1alpha (HIF-1alpha): role of cytoplasmic trapping of HIF-2alpha. Mol Cell Biol 23(14):4959–4971 PubMedCAS Google Scholar
Maynard MA, Qi H, Chung J et al (2003) Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem 278(13):11032–11040 PubMedCAS Google Scholar
Hirsila M, Koivunen P, Gunzler V et al (2003) Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem 278(33):30772–30780 PubMed Google Scholar
Makino Y, Uenishi R, Okamoto K et al (2007) Transcriptional up-regulation of inhibitory PAS domain protein gene expression by hypoxia-inducible factor 1 (HIF-1): a negative feedback regulatory circuit in HIF-1-mediated signaling in hypoxic cells. J Biol Chem 282(19):14073–14082 PubMedCAS Google Scholar
Makino Y, Kanopka A, Wilson WJ et al (2002) Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem 277(36):32405–32408 PubMedCAS Google Scholar
Makino Y, Cao R, Svensson K et al (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414(6863):550–554 PubMedCAS Google Scholar
Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15(20):2675–2686 PubMedCAS Google Scholar
Lando D, Peet DJ, Gorman JJ et al (2002) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16(12):1466–1471 PubMedCAS Google Scholar
Ivan M, Kondo K, Yang H et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468 PubMedCAS Google Scholar
Masson N, Willam C, Maxwell PH et al (2001) Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. Embo J 20(18):5197–5206 PubMedCAS Google Scholar
Koivunen P, Tiainen P, Hyvarinen J et al (2007) An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor alpha. J Biol Chem 282(42):30544–30552 PubMedCAS Google Scholar
Bruick RK (2003) Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev 17(21):2614–2623 PubMedCAS Google Scholar
Kaelin WG (2005) Proline hydroxylation and gene expression. Annu Rev Biochem 74:115–128 PubMedCAS Google Scholar
Schofield CJ, Ratcliffe PJ (2005) Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun 338(1):617–626 PubMedCAS Google Scholar
Fong GH, Takeda K, (2008) Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ doi:10.1038/cdd.2008.10
Gerald D, Berra E, Frapart YM et al (2004) JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118(6):781–794 PubMedCAS Google Scholar
Pan Y, Mansfield KD, Bertozzi CC et al (2007) Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol 27(3):912–925 PubMedCAS Google Scholar
Metzen E, Zhou J, Jelkmann W et al (2003) Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell 14(8):3470–3481 PubMedCAS Google Scholar
Koivunen P, Hirsila M, Remes AM et al (2007) Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem 282(7):4524–4532 PubMedCAS Google Scholar
Selak MA, Armour SM, MacKenzie ED et al (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7(1):77–85 PubMedCAS Google Scholar
Baek JH, Mahon PC, Oh J et al (2005) OS-9 interacts with hypoxia-inducible factor 1alpha and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1alpha. Mol Cell 17(4):503–512 PubMedCAS Google Scholar
Ozer A, Wu LC, Bruick RK (2005) The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc Natl Acad Sci USA 102(21):7481–7486 PubMedCAS Google Scholar
Nakayama K, Frew IJ, Hagensen M et al (2004) Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell 117(7):941–952 PubMedCAS Google Scholar
Appelhoff RJ, Tian YM, Raval RR et al (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279(37):38458–38465 PubMedCAS Google Scholar
Takeda K, Ho VC, Takeda H et al (2006) Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol 26(22):8336–8346 PubMedCAS Google Scholar
Takeda K, Cowan A, Fong GH (2007) Essential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular system. Circulation 116(7):774–781 PubMedCAS Google Scholar
del Peso L, Castellanos MC, Temes E et al (2003) The von Hippel Lindau/hypoxia-inducible factor (HIF) pathway regulates the transcription of the HIF-proline hydroxylase genes in response to low oxygen. J Biol Chem 278(49):48690–48695 PubMed Google Scholar
Stiehl DP, Wirthner R, Koditz J et al (2006) Increased prolyl 4-hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen-sensing system. J Biol Chem 281(33):23482–23491 PubMedCAS Google Scholar
Marxsen JH, Stengel P, Doege K et al (2004) Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases. Biochem J 381(Pt 3):761–767 PubMedCAS Google Scholar
Metzen E, Stiehl DP, Doege K et al (2005) Regulation of the prolyl hydroxylase domain protein 2 (phd2/egln-1) gene: identification of a functional hypoxia-responsive element. Biochem J 387(Pt 3):711–717 PubMedCAS Google Scholar
D’Angelo G, Duplan E, Boyer N et al (2003) Hypoxia up-regulates prolyl hydroxylase activity: a feedback mechanism that limits HIF-1 responses during reoxygenation. J Biol Chem 278(40):38183–38187 PubMedCAS Google Scholar
Zhong H, Chiles K, Feldser D et al (2000) Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60(6):1541–1545 PubMedCAS Google Scholar
Treins C, Giorgetti-Peraldi S, Murdaca J et al (2002) Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem 277(31):27975–27981 PubMedCAS Google Scholar
Feldser D, Agani F, Iyer NV et al (1999) Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res 59(16):3915–3918 PubMedCAS Google Scholar
Zelzer E, Levy Y, Kahana C et al (1998) Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. Embo J 17(17):5085–5094 PubMedCAS Google Scholar
Laughner E, Taghavi P, Chiles K et al (2001) HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21(12):3995–4004 PubMedCAS Google Scholar
Richard DE, Berra E, Pouyssegur J (2000) Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem 275(35):26765–26771 PubMedCAS Google Scholar
Page EL, Robitaille GA, Pouyssegur J et al (2002) Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms. J Biol Chem 277(50):48403–48409 PubMedCAS Google Scholar
Thornton RD, Lane P, Borghaei RC et al (2000) Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts. Biochem J 350(1):307–312 PubMedCAS Google Scholar
Sandau KB, Zhou J, Kietzmann T et al (2001) Regulation of the hypoxia-inducible factor 1alpha by the inflammatory mediators nitric oxide and tumor necrosis factor-alpha in contrast to desferroxamine and phenylarsine oxide. J Biol Chem 276(43):39805–39811 PubMedCAS Google Scholar
Fukuda R, Hirota K, Fan F et al (2002) Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 277(41):38205–38211 PubMedCAS Google Scholar
Mylonis I, Chachami G, Samiotaki M et al (2006) Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. J Biol Chem 281(44):33095–33106 PubMedCAS Google Scholar
Gradin K, Takasaki C, Fujii-Kuriyama Y et al (2002) The transcriptional activation function of the HIF-like factor requires phosphorylation at a conserved threonine. J Biol Chem 277(26):23508–23514 PubMedCAS Google Scholar
Richard DE, Berra E, Gothie E et al (1999) p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem 274(46):32631–32637 PubMedCAS Google Scholar
Arany Z, Huang LE, Eckner R et al (1996) An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA 93(23):12969–12973 PubMedCAS Google Scholar
Ema M, Hirota K, Mimura J et al (1999) Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. Embo J 18(7):1905–1914 PubMedCAS Google Scholar
Land SC, Tee AR (2007) Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem 282(28):20534–20543 PubMedCAS Google Scholar
Freedman SJ, Sun ZY, Kung AL et al (2003) Structural basis for negative regulation of hypoxia-inducible factor-1alpha by CITED2. Nat Struct Biol 10(7):504–512 PubMedCAS Google Scholar
Blagosklonny MV, An WG, Romanova LY et al (1998) p53 inhibits hypoxia-inducible factor-stimulated transcription. J Biol Chem 273(20):11995–11998 PubMedCAS Google Scholar
Lisy K, Peet DJ (2008) Turn me on: regulating HIF transcriptional activity. Cell Death Differ. doi:10.1038/sj.cdd.4402315
Jain S, Maltepe E, Lu MM et al (1998) Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse. Mech Dev 73(1):117–123 PubMedCAS Google Scholar
Compernolle V, Brusselmans K, Acker T et al (2002) Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 8(7):702–710 PubMedCAS Google Scholar
Rankin EB, Biju MP, Liu Q et al (2007) Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest 117(4):1068–1077 PubMedCAS Google Scholar
Gruber M, Hu CJ, Johnson RS et al (2007) Acute postnatal ablation of Hif-2alpha results in anemia. Proc Natl Acad Sci USA 104(7):2301–2306 PubMedCAS Google Scholar
Ravi R, Mookerjee B, Bhujwalla ZM et al (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14(1):34–44 PubMedCAS Google Scholar
Pan Y, Oprysko PR, Asham AM et al (2004) p53 cannot be induced by hypoxia alone but responds to the hypoxic microenvironment. Oncogene 23(29):4975–4983 PubMedCAS Google Scholar
Sano M, Minamino T, Toko H et al (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446(7134):444–448 PubMedCAS Google Scholar
Pi X, Garin G, Xie L et al (2005) BMK1/ERK5 is a novel regulator of angiogenesis by destabilizing hypoxia inducible factor 1alpha. Circ Res 96(11):1145–1151 PubMedCAS Google Scholar
Cheng J, Kang X, Zhang S et al (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131(3):584–595 PubMedCAS Google Scholar
Chen L, Uchida K, Endler A et al (2007) Mammalian tumor suppressor Int6 specifically targets hypoxia inducible factor 2 alpha for degradation by hypoxia- and pVHL-independent regulation. J Biol Chem 282(17):12707–12716 PubMedCAS Google Scholar
Minchenko A, Caro J, (2000) Regulation of endothelin-1 gene expression in human microvascular endothelial cells by hypoxia and cobalt: role of hypoxia responsive element. Mol Cell Biochem 208(1–2):53–62 PubMedCAS Google Scholar
Salani D, Taraboletti G, Rosano L et al (2000) Endothelin-1 induces an angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Am J Pathol 157(5):1703–1711 PubMedCAS Google Scholar
Oikawa M, Abe M, Kurosawa H et al (2001) Hypoxia induces transcription factor ETS-1 via the activity of hypoxia-inducible factor-1. Biochem Biophys Res Commun 289(1):39–43 PubMedCAS Google Scholar
Phillips RJ, Mestas J, Gharaee-Kermani M et al (2005) Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. J Biol Chem 280(23):22473–22481 PubMedCAS Google Scholar
Ceradini DJ, Kulkarni AR, Callaghan MJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864 PubMedCAS Google Scholar
Zagzag D, Lukyanov Y, Lan L et al (2006) Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest 86(12):1221–1232 PubMedCAS Google Scholar
Zagzag D, Krishnamachary B, Yee H et al (2005) Stromal cell-derived factor-1alpha and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res 65(14):6178–6188 PubMedCAS Google Scholar
Suzuki A, Kusakai G, Shimojo Y et al (2005) Involvement of transforming growth factor-beta 1 signaling in hypoxia-induced tolerance to glucose starvation. J Biol Chem 280(36):31557–31563 PubMedCAS Google Scholar
Green CJ, Lichtlen P, Huynh NT et al (2001) Placenta growth factor gene expression is induced by hypoxia in fibroblasts: a central role for metal transcription factor-1. Cancer Res 61(6):2696–2703 PubMedCAS Google Scholar
Yamakawa M, Liu LX, Date T et al (2003) Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 93(7):664–673 PubMedCAS Google Scholar
Khaliq A, Dunk C, Jiang J et al (1999) Hypoxia down-regulates placenta growth factor, whereas fetal growth restriction up-regulates placenta growth factor expression: molecular evidence for “placental hyperoxia” in intrauterine growth restriction. Lab Invest 79(2):151–170 PubMedCAS Google Scholar
Yonekura H, Sakurai S, Liu X et al (1999) Placenta growth factor and vascular endothelial growth factor B and C expression in microvascular endothelial cells and pericytes. Implication in autocrine and paracrine regulation of angiogenesis. J Biol Chem 274(49):35172–35178 PubMedCAS Google Scholar
Nilsson I, Shibuya M, Wennstrom S, (2004) Differential activation of vascular genes by hypoxia in primary endothelial cells. Exp Cell Res 299(2):476–485 PubMedCAS Google Scholar
Willam C, Koehne P, Jurgensen JS et al (2000) Tie2 receptor expression is stimulated by hypoxia and proinflammatory cytokines in human endothelial cells. Circ Res 87(5):370–377 PubMedCAS Google Scholar
Zhang SX, Gozal D, Sachleben LR Jr. et al (2003) Hypoxia induces an autocrine-paracrine survival pathway via platelet-derived growth factor (PDGF)-B/PDGF-beta receptor/phosphatidylinositol 3-kinase/Akt signaling in RN46A neuronal cells. Faseb J 17(12):1709–1711 PubMedCAS Google Scholar
Elvert G, Kappel A, Heidenreich R et al (2003) Cooperative interaction of hypoxia-inducible factor-2alpha (HIF-2alpha ) and Ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1). J Biol Chem 278(9):7520–7530 PubMedCAS Google Scholar
Le Bras A, Lionneton F, Mattot V et al (2007) HIF-2alpha specifically activates the VE-cadherin promoter independently of hypoxia and in synergy with Ets-1 through two essential ETS-binding sites. Oncogene 26(53):7480–7489 PubMedCAS Google Scholar
Pichiule P, Chavez JC, LaManna JC (2004) Hypoxic regulation of angiopoietin-2 expression in endothelial cells. J Biol Chem 279(13):12171–12180 PubMedCAS Google Scholar
Okuyama H, Krishnamachary B, Zhou YF et al (2006) Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1. J Biol Chem 281(22):15554–15563 PubMedCAS Google Scholar
Li C, Issa R, Kumar P et al (2003) CD105 prevents apoptosis in hypoxic endothelial cells. J Cell Sci 116(Pt 13):2677–2685 PubMedCAS Google Scholar
Kaidi A, Qualtrough D, Williams AC et al (2006) Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res 66(13):6683–6691 PubMedCAS Google Scholar
Anelli V, Gault CR, Cheng AB et al (2008) Sphingosine Kinase 1 is up-regulated during hypoxia in U87MG glioma cells: role of hypoxia-inducible factors 1 and 2. J Biol Chem 283(6):3365–3375 PubMedCAS Google Scholar
Sodhi CP, Phadke SA, Batlle D et al (2001) Hypoxia stimulates osteopontin expression and proliferation of cultured vascular smooth muscle cells: potentiation by high glucose. Diabetes 50(6):1482–1490 PubMedCAS Google Scholar
Zhu Y, Denhardt DT, Cao H et al (2005) Hypoxia upregulates osteopontin expression in NIH-3T3 cells via a Ras-activated enhancer. Oncogene 24(43):6555–6563 PubMedCAS Google Scholar
Calvani M, Rapisarda A, Uranchimeg B et al (2006) Hypoxic induction of an HIF-1alpha-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells. Blood 107(7):2705–2712 PubMedCAS Google Scholar
Kuwabara K, Ogawa S, Matsumoto M et al (1995) Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci USA 92(10):4606–4610 PubMedCAS Google Scholar
Carroll VA, Ashcroft M (2006) Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. Cancer Res 66(12):6264–6270 PubMedCAS Google Scholar
Kim KS, Rajagopal V, Gonsalves C et al (2006) A novel role of hypoxia-inducible factor in cobalt chloride- and hypoxia-mediated expression of IL-8 chemokine in human endothelial cells. J Immunol 177(10):7211–7224 PubMedCAS Google Scholar
Gunaratnam L, Morley M, Franovic A et al (2003) Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(-/-) renal cell carcinoma cells. J Biol Chem 278(45):44966–44974 PubMedCAS Google Scholar
O’Toole EA, van Koningsveld R, Chen M et al (2008) Hypoxia induces epidermal keratinocyte matrix metalloproteinase-9 secretion via the protein kinase C pathway. J Cell Physiol 214(1):47–55 PubMedCAS Google Scholar
Ikeda E, Achen MG, Breier G et al (1995) Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem 270(34):19761–19766 PubMedCAS Google Scholar
Forsythe JA, Jiang BH, Iyer NV et al (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16(9):4604–4613 PubMedCAS Google Scholar
Takeda N, Maemura K, Imai Y et al (2004) Endothelial PAS domain protein 1 gene promotes angiogenesis through the transactivation of both vascular endothelial growth factor and its receptor, Flt-1. Circ Res 95(2):146–153 PubMedCAS Google Scholar
Gerber HP, Condorelli F, Park J et al (1997) Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem 272(38):23659–23667 PubMedCAS Google Scholar
Marti HH, Risau W, (1998) Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci USA 95(26):15809–15814 PubMedCAS Google Scholar
Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12(12):5447–5454 PubMedCAS Google Scholar
Kertesz N, Wu J, Chen TH et al (2004) The role of erythropoietin in regulating angiogenesis. Dev Biol 276(1):101–110 PubMedCAS Google Scholar
Jaquet K, Krause K, Tawakol-Khodai M et al (2002) Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc Res 64(2):326–333 PubMedCAS Google Scholar
Morita M, Ohneda O, Yamashita T et al (2003) HLF/HIF-2alpha is a key factor in retinopathy of prematurity in association with erythropoietin. Embo J 22(5):1134–1146 PubMedCAS Google Scholar
Yu J, deMuinck ED, Zhuang Z et al (2005) Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Proc Natl Acad Sci USA 102(31):10999–11004 PubMedCAS Google Scholar
Coulet F, Nadaud S, Agrapart M et al (2003) Identification of hypoxia-response element in the human endothelial nitric-oxide synthase gene promoter. J Biol Chem 278(47):46230–46240 PubMedCAS Google Scholar
Zhao X, Lu X, Feng Q, (2002) Deficiency in endothelial nitric oxide synthase impairs myocardial angiogenesis. Am J Physiol Heart Circ Physiol 283(6):H2371–2378 PubMedCAS Google Scholar
Kappel A, Ronicke V, Damert A et al (1999) Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic mice. Blood 93(12):4284–4292 PubMedCAS Google Scholar
Duan LJ, Zhang-Benoit Y, Fong GH (2005) Endothelium-intrinsic requirement for Hif-2alpha during vascular development. Circulation 111(17):2227–2232 PubMedCAS Google Scholar
Blau HM, Banfi A, (2001) The well-tempered vessel. Nat Med 7(5):532–534 PubMedCAS Google Scholar
Kim JW, Gao P, Liu YC et al (2007) Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol 27(21):7381–7393 PubMedCAS Google Scholar
Schmidt D, Textor B, Pein OT et al (2007) Critical role for NF-kappaB-induced JunB in VEGF regulation and tumor angiogenesis. Embo J 26(3):710–719 PubMedCAS Google Scholar
Mizukami Y, Jo WS, Duerr EM et al (2005) Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med 11(9):992–997 PubMedCAS Google Scholar
Cummins EP, Berra E, Comerford KM et al (2006) Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci USA 103(48):18154–18159 PubMedCAS Google Scholar
Levy NS, Chung S, Furneaux H et al (1998) Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 273(11):6417–6423 PubMedCAS Google Scholar
Stein I, Itin A, Einat P et al (1998) Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 18(6):3112–3119 PubMedCAS Google Scholar
Ozawa K, Kondo T, Hori O et al (2001) Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport. J Clin Invest 108(1):41–50 PubMedCAS Google Scholar
Asikainen TM, Schneider BK, Waleh NS et al (2005) Activation of hypoxia-inducible factors in hyperoxia through prolyl 4-hydroxylase blockade in cells and explants of primate lung. Proc Natl Acad Sci USA 102(29):10212–10217 PubMedCAS Google Scholar
Brogi E, Schatteman G, Wu T et al (1996) Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J Clin Invest 97(2):469–476 PubMedCAS Google Scholar
Waltenberger J, Mayr U, Pentz S et al (1996) Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. Circulation 94(7):1647–1654 PubMedCAS Google Scholar
LeCouter J, Kowalski J, Foster J et al (2001) Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412(6850):877–884 PubMedCAS Google Scholar
Namiki A, Brogi E, Kearney M et al (1995) Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J Biol Chem 270(52):31189–31195 PubMedCAS Google Scholar
Murohara T, Witzenbichler B, Spyridopoulos I et al (1999) Role of endothelial nitric oxide synthase in endothelial cell migration. Arteriosclerosis, thrombosis, and vascular biology 19(5):1156–1161 PubMedCAS Google Scholar
Phillips PG, Birnby LM, Narendran A, (1995) Hypoxia induces capillary network formation in cultured bovine pulmonary microvessel endothelial cells. Am J Physiol 268(5 Pt 1):L789–800 PubMedCAS Google Scholar
Matsushita H, Morishita R, Nata T et al (2000) Hypoxia-induced endothelial apoptosis through nuclear factor-kappaB (NF-kappaB)-mediated bcl-2 suppression: in vivo evidence of the importance of NF-kappaB in endothelial cell regulation. Circ Res 86(9):974–981 PubMedCAS Google Scholar
Stempien-Otero A, Karsan A, Cornejo CJ et al (1999) Mechanisms of hypoxia-induced endothelial cell death. Role of p53 in apoptosis. J Biol Chem 274(12):8039–8045 PubMedCAS Google Scholar
An WG, Kanekal M, Simon MC et al (1998) Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature 392(6674):405–408 PubMedCAS Google Scholar
Dumont DJ, Fong GH, Puri MC et al (1995) Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn 203(1):80–92 PubMedCAS Google Scholar
Damert A, Miquerol L, Gertsenstein M et al (2002) Insufficient VEGFA activity in yolk sac endoderm compromises haematopoietic and endothelial differentiation. Development 129(8):1881–1892 PubMedCAS Google Scholar
Lee S, Chen TT, Barber CL et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130(4):691–703 PubMedCAS Google Scholar
Schoch HJ, Fischer S, Marti HH (2002) Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain 125(Pt 11):2549–2557 PubMed Google Scholar
Vogel C, Bauer A, Wiesnet M et al (2007) Flt-1, but not Flk-1 mediates hyperpermeability through activation of the PI3-K/Akt pathway. J Cell Physiol 212(1):236–243 PubMedCAS Google Scholar
Loberg RD, Vesely E, Brosius FC III (2002) Enhanced glycogen synthase kinase-3beta activity mediates hypoxia-induced apoptosis of vascular smooth muscle cells and is prevented by glucose transport and metabolism. J Biol Chem 277(44):41667–41673 PubMedCAS Google Scholar
Lanner MC, Raper M, Pratt WM et al (2005) Heterotrimeric G proteins and the platelet-derived growth factor receptor-beta contribute to hypoxic proliferation of smooth muscle cells. Am J Respir Cell Mol Biol 33(4):412–419 PubMedCAS Google Scholar
Sheares KK, Jeffery TK, Long L et al (2004) Differential effects of TGF-beta1 and BMP-4 on the hypoxic induction of cyclooxygenase-2 in human pulmonary artery smooth muscle cells. Am J Physiol Heart Circ Physiol 287(5):L919–927 CAS Google Scholar
Schultz K, Fanburg BL, Beasley D (2006) Hypoxia and hypoxia-inducible factor-1alpha promote growth factor-induced proliferation of human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 290(6):H2528–2534 PubMedCAS Google Scholar
Lehti K, Allen E, Birkedal-Hansen H et al (2005) An MT1-MMP-PDGF receptor-beta axis regulates mural cell investment of the microvasculature. Genes Dev 19(8):979–991 PubMedCAS Google Scholar
Corley KM Taylor CJ, Lilly B (2005) Hypoxia-inducible factor 1alpha modulates adhesion, migration, and FAK phosphorylation in vascular smooth muscle cells. J Cell Biochem 96(5):971–985 Google Scholar
Foo SS, Turner CJ, Adams S et al (2006) Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124(1):161–173 PubMedCAS Google Scholar
Liu Y, Wada R, Yamashita T et al (2000) Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 106(8):951–961 PubMedCAS Google Scholar
Allende ML, Yamashita T, Proia RL (2003) G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood 102(10):3665–3667 PubMedCAS Google Scholar
Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104(8):2224–2234 PubMedCAS Google Scholar
Burke-Gaffney A, Brooks AV, Bogle RG (2002) Regulation of chemokine expression in atherosclerosis. Vascul Pharmacol 38(5):283–292 PubMedCAS Google Scholar
Morimoto H, Takahashi M, Izawa A et al (2006) Cardiac overexpression of monocyte chemoattractant protein-1 in transgenic mice prevents cardiac dysfunction and remodeling after myocardial infarction. Circ Res 99(8):891–899 PubMedCAS Google Scholar
Heinrich SA, Messingham KA, Gregory MS et al (2003) Elevated monocyte chemoattractant protein-1 levels following thermal injury precede monocyte recruitment to the wound site and are controlled, in part, by tumor necrosis factor-alpha. Wound Repair Regen 11(2):110–119 PubMed Google Scholar
Clinton SK, Underwood R, Hayes L et al (1992) Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol 140(2):301–316 PubMedCAS Google Scholar
van Weel V, Seghers L, de Vries MR et al (2007) Expression of vascular endothelial growth factor, stromal cell-derived factor-1, and CXCR4 in human limb muscle with acute and chronic ischemia. Arteriosclerosis, Thrombosis, Vasc Biol 27(6):1426–1432 Google Scholar
Dvorak HF, Brown LF, Detmar M et al (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146(5):1029–1039 PubMedCAS Google Scholar
Khurana R, Moons L, Shafi S et al (2005) Placental growth factor promotes atherosclerotic intimal thickening and macrophage accumulation. Circulation 111(21):2828–2836 PubMedCAS Google Scholar
Hiratsuka S, Nakamura K, Iwai S et al (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2(4):289–300 PubMedCAS Google Scholar
Arras M, Strasser R, Mohri M et al (1998) Tumor necrosis factor-alpha is expressed by monocytes/macrophages following cardiac microembolization and is antagonized by cyclosporine. Basic Res Cardiol 93(2):97–107 PubMedCAS Google Scholar
Gordon S, Clarke S, Greaves D et al (1995) Molecular immunobiology of macrophages: recent progress. Curr Opin Immunol 7(1):24–33 PubMedCAS Google Scholar
Sunderkotter C, Goebeler M, Schulze-Osthoff K et al (1991) Macrophage-derived angiogenesis factors. Pharmacol Ther 51(2):195–216 PubMedCAS Google Scholar
Jansen PL, Rosch R, Jansen M et al (2007) Regulation of MMP-2 gene transcription in dermal wounds. J Invest Dermatol 127(7):1762–1767 PubMedCAS Google Scholar
Li J, Post M, Volk R et al (2000) PR39, a peptide regulator of angiogenesis. Nat Med 6(1):49–55 PubMedCAS Google Scholar
Nanka O, Valasek P, Dvorakova M et al (2006) Experimental hypoxia and embryonic angiogenesis. Dev Dyn 235(3):723–733 PubMedCAS Google Scholar
Lee YM, Jeong CH, Koo SY et al (2001) Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development. Dev Dyn 220(2):175–186 PubMedCAS Google Scholar
Iyer NV, Kotch LE, Agani F et al (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12(2):149–162 PubMedCAS Google Scholar
Ryan HE, Lo J, Johnson RS (1998) HIF-1 alpha is required for solid tumor formation and embryonic vascularization. Embo J 17(11):3005–3015 PubMedCAS Google Scholar
Maltepe E, Schmidt JV, Baunoch D et al (1997) Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386(6623):403–407 PubMedCAS Google Scholar
Ramirez-Bergeron DL, Runge A, Adelman DM et al (2006) HIF-dependent hematopoietic factors regulate the development of the embryonic vasculature. Dev Cell 11(1):81–92 PubMedCAS Google Scholar
Peng J, Zhang L, Drysdale L et al (2000) The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci USA 97(15):8386–8391 PubMedCAS Google Scholar
Tian H, Hammer RE, Matsumoto AM et al (1998) The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 12(21):3320–3324 PubMedCAS Google Scholar
Scortegagna M, Ding K, Oktay Y et al (2003) Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1-/- mice. Nat Genet 35(4):331–340 PubMedCAS Google Scholar
Tang N, Wang L, Esko J et al (2004) Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6(5):485–495 PubMedCAS Google Scholar
gLicht AH, Muller-Holtkamp F, Flamme I et al (2006) Inhibition of hypoxia-inducible factor activity in endothelial cells disrupts embryonic cardiovascular development. Blood 107(2):584–590 Google Scholar
Gnarra JR, Ward JM, Porter FD et al (1997) Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci USA 94(17):9102–9107 PubMedCAS Google Scholar
Yin Z, Haynie J, Yang X et al (2002) The essential role of Cited2, a negative regulator for HIF-1alpha, in heart development and neurulation. Proc Natl Acad Sci USA 99(16):10488–10493 PubMedCAS Google Scholar
Miquerol L, Langille BL, Nagy A (2000) Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 127(18):3941–3946 PubMedCAS Google Scholar
Haase VH, Glickman JN, Socolovsky M et al (2001) Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. Proc Natl Acad Sci USA 98(4):1583–1588 PubMedCAS Google Scholar
Rankin EB, Higgins DF, Walisser JA et al (2005) Inactivation of the arylhydrocarbon receptor nuclear translocator (Arnt) suppresses von Hippel-Lindau disease-associated vascular tumors in mice. Mol Cell Biol 25(8):3163–3172 PubMedCAS Google Scholar
Kim WY, Safran M, Buckley MR et al (2006) Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation in vivo. Embo J 25(19):4650–4662 PubMedCAS Google Scholar
Vincent KA, Shyu KG, Luo Y et al (2000) Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1alpha/VP16 hybrid transcription factor. Circulation 102(18):2255–2261 PubMedCAS Google Scholar
Pajusola K, Kunnapuu J, Vuorikoski S et al (2005) Stabilized HIF-1alpha is superior to VEGF for angiogenesis in skeletal muscle via adeno-associated virus gene transfer. Faseb J 19(10):1365–1367 PubMedCAS Google Scholar
Heinl-Green A, Radke PW, Munkonge FM et al (2005) The efficacy of a ‘master switch gene’ HIF-1alpha in a porcine model of chronic myocardial ischaemia. Eur Heart J 26(13):1327–1332 PubMedCAS Google Scholar
Elson DA, Thurston G, Huang LE et al (2001) Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1alpha. Genes Dev 15(19):2520–2532 PubMedCAS Google Scholar
Aragones J, Schneider M, Van Geyte K et al (2008) Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genet 40(2):170–180 PubMedCAS Google Scholar
Kotch LE, Iyer NV, Laughner E et al (1999) Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol 209(2):254–267 PubMedCAS Google Scholar
Hirose K, Morita M, Ema M et al (1996) cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS factor (Arnt2) with close sequence similarity to the aryl hydrocarbon receptor nuclear translocator (Arnt). Mol Cell Biol 16(4):1706–1713 PubMedCAS Google Scholar
Oosthuyse B, Moons L, Storkebaum E et al (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28(2):131–138 PubMedCAS Google Scholar
Thurston G, Suri C, Smith K et al (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science New York NY 286(5449):2511–2514 CAS Google Scholar
Leibovich SJ, Ross R, (1975) The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol 78(1):71–100 PubMedCAS Google Scholar
Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15(11):599–607 PubMedCAS Google Scholar
Simpson DM, Ross R (1972) The neutrophilic leukocyte in wound repair a study with antineutrophil serum. J Clin Invest 51(8):2009–2023 PubMedCAS Google Scholar
Reichner JS, Albina JE (2004) Determination of the role of hypoxia-inducible factor 1 in wound healing. Methods Enzymol 381:527–538 PubMedCAS Google Scholar
Davidson JD, Mustoe TA (2001) Oxygen in wound healing: more than a nutrient. Wound Repair Regen 9(3):175–177 PubMedCAS Google Scholar
Trentin D, Hubbell J, Hall H (2005) Non-viral gene delivery for local and controlled DNA release. J Control Release 102(1):263–275 PubMedCAS Google Scholar
Warnecke C, Griethe W, Weidemann A et al (2003) Activation of the hypoxia-inducible factor-pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors. Faseb J 17(9):1186–1188 PubMedCAS Google Scholar
Willam C, Masson N, Tian YM et al (2002) Peptide blockade of HIFalpha degradation modulates cellular metabolism and angiogenesis. Proc Natl Acad Sci USA 99(16):10423–10428 PubMedCAS Google Scholar
Banai S, Shweiki D, Pinson A et al (1994) Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: implications for coronary angiogenesis. Cardiovasc Res 28(8):1176–1179 PubMedCAS Google Scholar
Lee MY, Ju WK, Cha JH et al (1999) Expression of vascular endothelial growth factor mRNA following transient forebrain ischemia in rats. Neurosci Lett 265(2):107–110 PubMedCAS Google Scholar
Miraliakbari R, Francalancia NA, Lust RM et al (2000) Differences in myocardial and peripheral VEGF and KDR levels after acute ischemia. Ann Thorac Surg 69(6):1750–1753; discussion 1754 Google Scholar
Nahrendorf M, Swirski FK, Aikawa E et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204(12):3037–3047 PubMedCAS Google Scholar
Koponen JK, Kekarainen T, Heinonen SE et al (2007) Umbilical cord blood-derived progenitor cells enhance muscle regeneration in mouse hindlimb ischemia model. Mol Ther 15(12):2172–2177 PubMedCAS Google Scholar
Wu Y, Ip JE, Huang J et al (2006) Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circ Res 99(3):315–322 PubMedCAS Google Scholar
Kocher AA, Schuster MD, Szabolcs MJ et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4):430–436 PubMedCAS Google Scholar
Grunewald M, Avraham I, Dor Y et al (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189 PubMedCAS Google Scholar
Huang Y, Hickey RP, Yeh JL et al (2004) Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. Faseb J 18(10):1138–1140 PubMedCAS Google Scholar
Shyu KG, Wang MT, Wang BW et al (2002) Intramyocardial injection of naked DNA encoding HIF-1alpha/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc Res 54(3):576–583 PubMedCAS Google Scholar
Patel TH, Kimura H, Weiss CR et al (2005) Constitutively active HIF-1alpha improves perfusion and arterial remodeling in an endovascular model of limb ischemia. Cardiovasc Res 68(1):144–154 PubMedCAS Google Scholar
Bosch-Marce M, Okuyama H, Wesley JB et al (2007) Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ Res 101(12):1310–1318 PubMedCAS Google Scholar
Gray C, Packham IM, Wurmser F et al (2007) Ischemia is not required for arteriogenesis in zebrafish embryos. Arterioscler Thromb Vasc Biol 27(10):2135–2141 PubMedCAS Google Scholar
Heil M, Eitenmuller I, Schmitz-Rixen T et al (2006) Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 10(1):45–55 PubMedCAS Google Scholar
Isner JM (1999) Cancer and atherosclerosis: the broad mandate of angiogenesis. Circulation 99(13):1653–1655 PubMedCAS Google Scholar
Moulton KS, Vakili K, Zurakowski D et al (2003) Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA 100(8):4736–4741 PubMedCAS Google Scholar
Vink A, Schoneveld AH, Lamers D et al (2007) HIF-1alpha expression is associated with an atheromatous inflammatory plaque phenotype and upregulated in activated macrophages. Atherosclerosis 195(2):e69–e75 PubMedCAS Google Scholar
Reynolds JD (2001) The management of retinopathy of prematurity. Paediatr Drugs 3(4):263–272 PubMedCAS Google Scholar
Pe’er J, Shweiki D, Itin A et al (1995) Hypoxia-induced expression of vascular endothelial growth factor by retinal cells is a common factor in neovascularizing ocular diseases. Lab Invest 72(6):638–645 PubMedCAS Google Scholar
Pierce EA, Avery RL, Foley ED et al (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 92(3):905–909 PubMedCAS Google Scholar
Aiello LP, Pierce EA, Foley ED et al (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 92(23):10457–10461 PubMedCAS Google Scholar
Ozaki H, Yu AY, Della N et al (1999) Hypoxia inducible factor-1alpha is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci 40(1):182–189 PubMedCAS Google Scholar
Nakano M, Satoh K, Fukumoto Y et al (2007) Important role of erythropoietin receptor to promote VEGF expression and angiogenesis in peripheral ischemia in mice. Circ Res 100(5):662–669 PubMedCAS Google Scholar
Ritter MR, Banin E, Moreno SK et al (2006) Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest 116(12):3266–3276 PubMedCAS Google Scholar
Chang KH, Chan-Ling T, McFarland EL et al (2007) IGF binding protein-3 regulates hematopoietic stem cell and endothelial precursor cell function during vascular development. Proc Natl Acad Sci USA 104(25):10595–10600 PubMedCAS Google Scholar
Lofqvist C, Chen J, Connor KM et al (2007) IGFBP3 suppresses retinopathy through suppression of oxygen-induced vessel loss and promotion of vascular regrowth. Proc Natl Acad Sci USA 104(25):10589–10594 PubMedCAS Google Scholar
Lima e Silva R, Shen J, Hackett SF et al (2007) The SDF-1/CXCR4 ligand/receptor pair is an important contributor to several types of ocular neovascularization. Faseb J 21(12):3219–3230 PubMedCAS Google Scholar
Kuwabara T, Cogan DG (1963) Retinal vascular patterns. VI. Mural cells of the retinal capillaries. Arch Ophthalmol 69:492–502 PubMedCAS Google Scholar
Beltramo E, Berrone E, Giunti S et al (2006) Effects of mechanical stress and high glucose on pericyte proliferation, apoptosis and contractile phenotype. Exp Eye Res 83(4):989–994 PubMedCAS Google Scholar
Ejaz S, Chekarova I, Ejaz A et al (2008) Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy. Diabetes Obes Metab 10(1):53–63 PubMedCAS Google Scholar
Aiello LP, Avery RL, Arrigg PG et al (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331(22):1480–1487 PubMedCAS Google Scholar
Wilkinson-Berka JL, Fletcher EL (2004) Angiotensin and bradykinin: targets for the treatment of vascular and neuro-glial pathology in diabetic retinopathy. Curr Pharm Des 10(27):3313–3330 PubMedCAS Google Scholar
Butler JM, Guthrie SM, Koc M et al (2005) SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest 115(1):86–93 PubMedCAS Google Scholar
Peters CL, Morris CJ, Mapp PI et al (2004) The transcription factors hypoxia-inducible factor 1alpha and Ets-1 colocalize in the hypoxic synovium of inflamed joints in adjuvant-induced arthritis. Arthritis Rheum 50(1):291–296 PubMedCAS Google Scholar
Hitchon C, Wong K, Ma G et al (2002) Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum 46(10):2587–2597 PubMedCAS Google Scholar
Firestein GS (1999) Starving the synovium: angiogenesis and inflammation in rheumatoid arthritis. J Clin Invest 103(1):3–4 PubMedCAS Google Scholar
Vaupel P, Kallinowski F, Okunieff P (1990) Blood flow, oxygen consumption and tissue oxygenation of human tumors. Adv Exp Med Biol 277:895–905 PubMedCAS Google Scholar
Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49(23):6449–6465 PubMedCAS Google Scholar
Zhong H, De Marzo AM, Laughner E et al (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59(22):5830–5835 PubMedCAS Google Scholar
Talks KL, Turley H, Gatter KC et al (2000) The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157(2):411–421 PubMedCAS Google Scholar
Lim JH, Lee ES, You HJ et al (2004) Ras-dependent induction of HIF-1alpha785 via the Raf/MEK/ERK pathway: a novel mechanism of Ras-mediated tumor promotion. Oncogene 23(58):9427–9431 PubMedCAS Google Scholar
Blancher C, Moore JW, Robertson N et al (2001) Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3’-kinase/Akt signaling pathway. Cancer Res 61(19):7349–7355 PubMedCAS Google Scholar
Semenza G (2002) Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 64(5–6):993–998 PubMedCAS Google Scholar
Bocci G, Man S, Green SK et al (2004) Increased plasma vascular endothelial growth factor (VEGF) as a surrogate marker for optimal therapeutic dosing of VEGF receptor-2 monoclonal antibodies. Cancer Res 64(18):6616–6625 PubMedCAS Google Scholar
Christensen JG, Vincent PW, Klohs WD et al (2005) Plasma vascular endothelial growth factor and interleukin-8 as biomarkers of antitumor efficacy of a prototypical erbB family tyrosine kinase inhibitor. Mol Cancer Ther 4(6):938–947 PubMedCAS Google Scholar
Le QT, Sutphin PD, Raychaudhuri S et al (2003) Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clin Cancer Res 9(1):59–67 PubMedCAS Google Scholar
Jain S, Chakraborty G, Bulbule A et al (2007) Osteopontin: an emerging therapeutic target for anticancer therapy. Expert Opin Ther Targets 11(1):81–90 PubMedCAS Google Scholar
Drevs J, Zirrgiebel U, Schmidt-Gersbach CI et al (2005) Soluble markers for the assessment of biological activity with PTK787/ZK 222584 (PTK/ZK):a vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor in patients with advanced colorectal cancer from two phase I trials. Ann Oncol 16(4):558–565 PubMedCAS Google Scholar
Caine GJ, Blann AD, Stonelake PS et al (2003) Plasma angiopoietin-1, angiopoietin-2 and Tie-2 in breast and prostate cancer: a comparison with VEGF and Flt-1. Eur J Clin Invest 33(10):883–890 PubMedCAS Google Scholar
Schliemann C, Bieker R, Thoennissen N et al (2007) Circulating angiopoietin-2 is a strong prognostic factor in acute myeloid leukemia. Leukemia 21(9):1901–1906 PubMedCAS Google Scholar
Dudek AZ, Mahaseth H (2005) Circulating angiogenic cytokines in patients with advanced non-small cell lung cancer: correlation with treatment response and survival. Cancer Invest 23(3):193–200 PubMedCAS Google Scholar
Wrobel T, Mazur G, Kapelko K et al (2005) Endostatin serum level in acute myeloid leukemia. Neoplasma 52(2):182–184 PubMedCAS Google Scholar
Bernardi R, Guernah I, Jin D et al (2006) PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature 442(7104):779–785 PubMedCAS Google Scholar
Luttun A, Tjwa M, Moons L et al (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8(8):831–840 PubMedCAS Google Scholar
Fischer C, Jonckx B, Mazzone M et al (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475 PubMedCAS Google Scholar
Fukumura D, Xavier R, Sugiura T et al (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94(6):715–725 PubMedCAS Google Scholar
Semenza GL (2000) HIF-1 and human disease: one highly involved factor. Genes Dev 14(16):1983–1991 PubMedCAS Google Scholar
Lin EY, Li JF, Gnatovskiy L et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66(23):11238–11246 PubMedCAS Google Scholar
Petit I, Jin D, Rafii S (2007) The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol 28(7):299–307 PubMedCAS Google Scholar
Li B, Sharpe EE, Maupin AB et al (2006) VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. Faseb J 20(9):1495–1497 PubMedCAS Google Scholar
Grimm C, Wenzel A, Groszer M et al (2002) HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med 8(7):718–724 PubMedCAS Google Scholar
Porta C, Subhra Kumar B, Larghi P et al (2007) Tumor promotion by tumor-associated macrophages. Adv Exp Med Biol 604:67–86 ArticlePubMed Google Scholar
Carmeliet P, Dor Y, Herbert JM et al (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394(6692):485–490 PubMedCAS Google Scholar
Ryan HE, Poloni M, McNulty W et al (2000) Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res 60(15):4010–4015 PubMedCAS Google Scholar
Mizukami Y, Li J, Zhang X et al (2004) Hypoxia-inducible factor-1-independent regulation of vascular endothelial growth factor by hypoxia in colon cancer. Cancer Res 64(5):1765–1772 PubMedCAS Google Scholar
Podar K, Anderson KC (2007) Inhibition of VEGF signaling pathways in multiple myeloma and other malignancies. Cell Cycle 6(5):538–542 PubMedCAS Google Scholar
Willett CG, Boucher Y, di Tomaso E et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10(2):145–147 PubMedCAS Google Scholar
Niethammer AG, Xiang R, Becker JC et al (2002) A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med 8(12):1369–1375 PubMedCAS Google Scholar
Hu CJ, Wang LY, Chodosh LA et al (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23(24):9361–9374 PubMedCAS Google Scholar
Kim HJ, Chung H, Yoo YG et al (2007) Inhibitor of DNA binding 1 activates vascular endothelial growth factor through enhancing the stability and activity of hypoxia-inducible factor-1alpha. Mol Cancer Res 5(4):321–329 PubMedCAS Google Scholar
Xu Q, Briggs J, Park S et al (2005) Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 24(36):5552–5560 PubMedCAS Google Scholar
Jung JE, Lee HG, Cho IH et al (2005) STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. Faseb J 19(10):1296–1298 PubMedCAS Google Scholar
Pore N, Liu S, Shu HK et al (2004) Sp1 is involved in Akt-mediated induction of VEGF expression through an HIF-1-independent mechanism. Mol Biol Cell 15(11):4841–4853 PubMedCAS Google Scholar
Miki N, Ikuta M, Matsui T, (2004) Hypoxia-induced activation of the retinoic acid receptor-related orphan receptor alpha4 gene by an interaction between hypoxia-inducible factor-1 and Sp1. J Biol Chem 279(15):15025–15031 PubMedCAS Google Scholar
Bracken CP, Whitelaw ML, Peet DJ (2005) Activity of hypoxia-inducible factor 2alpha is regulated by association with the NF-kappaB essential modulator. J Biol Chem 280(14):14240–14251 PubMedCAS Google Scholar
Sanchez-Elsner T, Botella LM, Velasco B et al (2001) Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothelial growth factor gene expression. J Biol Chem 276(42):38527–38535 PubMedCAS Google Scholar
Desbaillets I, Diserens AC, de Tribolet N et al (1999) Regulation of interleukin-8 expression by reduced oxygen pressure in human glioblastoma. Oncogene 18(7):1447–1456 PubMedCAS Google Scholar
Peng ZG, Zhou MY, Huang Y et al (2008) Physical and functional interaction of Runt-related protein 1 with hypoxia-inducible factor-1alpha. Oncogene 27(6):839–847 PubMedCAS Google Scholar
Mizukami Y, Fujiki K, Duerr EM et al (2006) Hypoxic regulation of vascular endothelial growth factor through the induction of phosphatidylinositol 3-kinase/Rho/ROCK and c-Myc. J Biol Chem 281(20):13957–13963 PubMedCAS Google Scholar
Sanchez-Elsner T, Ramirez JR, Sanz-Rodriguez F et al (2004) A cross-talk between hypoxia and TGF-beta orchestrates erythropoietin gene regulation through SP1 and Smads. J Mol Biol 336(1):9–24 PubMedCAS Google Scholar