Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms (original) (raw)
References
Agarwal, D. K., Silander, J. A., Gelfand, A. E., Dewar, R. E., & Mickelson, J. G. (2005). Tropical deforestation in Madagascar: analysis using hierarchical, spatially explicit Bayesian regression models. Ecological Modelling, 185, 105–131. Article Google Scholar
Andrienko, N., & Andrienko, G. (2006). Exploratory analysis of spatial and temporal data: a systematic approach. Berlin: Springer. Google Scholar
Anselin, L. (1995). Local indicators of spatial association: LISA. Geographical Analysis, 27(2), 93–115. Article Google Scholar
Anselin, L. (2002). Under the hood: issues in the specification and interpretation of spatial regression. Models of Agricultural Economics, 27, 247–267. Article Google Scholar
Asai, K. (1995). Fuzzy systems for information processing. Amsterdam: IOS Press. Google Scholar
Assunçao, R., Costa, M., Tavares, A., & Ferreira, S. (2006). Fast detection of arbitrarily shaped disease clusters. Statistics in Medicine, 25, 723–742. Article Google Scholar
Bäck, T. (1996). Evolutionary algorithms in theory and practice. New York: Oxford University Press. Google Scholar
Barbosa, H. J., & Barreto, A. M. (2001). An interactive genetic algorithm with co-evolution of weights for multiobjective problems. In L. Spector, E. D. Goodman, A. Wu, W. Langdon, H. M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, & E. Burke (Eds.), Proceedings of the genetic and evolutionary computation conference (GECCO’2001) (pp. 203–210), San Francisco, California. San Mateo: Morgan Kaufmann. Google Scholar
Baddeley, A., Gregori, P., Mateu, J., Stoica, R., & Stoyan, D. (2006). Case studies in spatial point process modeling. Berlin: Springer. Book Google Scholar
Beirlant, J., Goegebeur, Y., Segers, J., & Teugels, J. (2004). Statistics of extremes: theory and applications. Chichester: Wiley. Book Google Scholar
Coello-Coello, C. A., & Lamont, G. B. (2004). Applications of multi-objective evolutionary algorithms. Singapore: Word Scientific. Book Google Scholar
Coello-Coello, C. A., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems. New York: Springer. Google Scholar
Das, I., & Dennis, J. (1997). A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Structural Optimization, 14(1), 63–69. Article Google Scholar
De Pinto, A., & Nelson, G. C. (2007). Modelling deforestation and land-use change: sparse data environments. Journal of Agricultural Economics, 58(3), 502–516. Article Google Scholar
Deb, K. (1999). Non-linear goal programming using multi-objective genetic algorithms (Technical Report CI-60/98). Dortmund: Department of Computer Science/LS11, University of Dortmund, Germany.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. Article Google Scholar
Emir-Farinas, H., & Francis, R. L. (2005). Demand point aggregation for planar covering location models. Annals of Operation Research, 136, 175–192. Article Google Scholar
Fischer, M. M. (2006). Spatial analysis and geocomputation. Berlin: Springer. Google Scholar
García-Alonso, C. R., & Pérez-Naranjo, L. (2007). Identification of financially compromised areas in the agrarian sector. In 22nd European conference on operational research book of abstracts (Vol. 1, p. 75). Google Scholar
Gonçalves, G. E., & Estellita, L. P. (2002). Integrating geographical information systems and multi-criteria methods: a case study. Annals of Operation Research, 116, 243–269. Article Google Scholar
Griffith, D. A. (2003). Using estimated missing spatial data with the 2-median model. Annals of Operation Research, 122, 233–247. Article Google Scholar
Gutiérrez, P. A., López-Granados, F., Peña-Barragán, J. M., Jurado-Expósito, M., Gómez-Casero, M. T., & Hervás-Martínez, C. (2008). Mapping sunflower yield as affected by Ridolfia segetum patches and elevation by applying evolutionary product unit neural networks to remote sensed data. Computers and Electronics in Agriculture, 60(2), 122–132. Article Google Scholar
Hajela, P., & Lin, C. Y. (1992). Genetic search strategies in multicriterion optimal design. Structural Optimization, 4, 99–107. Article Google Scholar
Hodgson, M. J., & Jacobsen, S. K. (2009). A hierarchical location-allocation model with travel based on expected referral distances. Annals of Operation Research, 167, 271–286. Article Google Scholar
Hof, J., & Bevers, M. (2000). Direct spatial optimization in natural resource management: four linear programming examples. Annals of Operation Research, 95, 67–81. Article Google Scholar
Holloway, G., Lacombe, D., & LeSage, J. P. (2007). Spatial econometric issues for bio-economic and land-use modelling. Journal of Agricultural Economics, 58(3), 549–588. Article Google Scholar
Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994). A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the first IEEE conference on evolutionary computation, IEEE World congress on computational intelligence (Vol. 1, pp. 82–87). Piscataway: IEEE Service Center. Chapter Google Scholar
Ishbuchi, H., & Murata, T. (1996). Multi-objective local search algorithm and its applications to flowshop scheduling. IEEE Transactions on Systems, Man, and Cybernetics, 28(3), 392–403. Article Google Scholar
Ishibuchi, H., & Murata, T. (1998). Multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Transactions on Systems, Man, and Cybernetics, 28(3), 392–403. Article Google Scholar
Kalyanmoy, D. (2004). Multi-objective optimization using evolutionary algorithms. Chichester: Wiley. Google Scholar
Kursawe, F. (1991). A variant of evolution strategies for vector optimization. In H. P. Schwefel & R. Männer (Eds.), Lecture notes in computer science: Vol. 496. Parallel problem solving from nature. 1st workshop, PPSN I (pp. 193–197), Dortmund, Germany. Berlin: Springer. Google Scholar
Laumanns, M., Thiele, L., & Zitzler, E. (2006). An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. European Journal of Operational Research, 169, 932–942. Article Google Scholar
Lee, M. A., & Esbensen, H. (1997). Fuzzy/multiobjective genetic systems for intelligent systems design tools and components. In W. Pedrycz (Ed.), Fuzzy evolutionary computation. Boston: Kluwer Academic. Google Scholar
Loughlin, D. H., & Ranjithan, S. (1997). The neighborhood constraint method: a genetic algorithm-based multiobjective optimization technique. In T. Bäck (Ed.), Proceedings of the seventh international conference on genetic algorithms (pp. 666–673). San Mateo: Morgan Kaufmann. Google Scholar
Michalewicz, Z., & Schoenauer, M. (1996). Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation, 4(1), 1–32. Article Google Scholar
Moreno, B., García-Alonso, C. R., Negrín-Hernández, M. A., Torres-González, F., & Salvador-Carulla, L. (2008). Spatial analysis to identify hotspots of prevalence of schizophrenia. Social Psychiatry and Psychiatric Epidemiology. doi:10.1007//s00127-008-0368-3. Google Scholar
Noyan, N. (2010). Alternate risk measures for emergency medical service system design. Annals of Operation Research. doi:10.1007/s10479-010-0787-x. Google Scholar
Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 27, 286–306. Article Google Scholar
Pérez-Naranjo, L. M., & García-Alonso, C. R. (2005). Spatial income distribution of horticultural farms in Andalusia. Cuadernos Geográficos, 37, 41–58. Google Scholar
Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman and Hall. Book Google Scholar
Smith, A. E., & Coit, D. W. (1997). Constrain handling techniques—penalty functions. In T. Bäck, D. B. Fogel, & Z. Michalewicz (Eds.), Handbook of evolutionary computation. London: Oxford University Press. Google Scholar
Srigiriraju, K. C. (2000). Noninferior surface tracing evolutionary algorithm (NSTEA) for multi objective optimization. Master’s thesis, North Carolina State University, Raleigh, North Carolina.
Staal, S. J., Baltenweck, L., Waithaka, M., de Wolff, T., & Njoroge, L. (2002). Location and uptake: integrated household and GIS analysis of technology adoption and land use with application to smallholder dairy farms in Kenya. Agricultural Economics, 27, 295–315. Article Google Scholar
Tavares-Pereira, F., Rui Figueira, J., Mousseau, V., & Roy, B. (2007). Multiple criteria districting problems: the public transportation network pricing system of the Paris region. Annals of Operation Research, 154, 69–92. Article Google Scholar
Wang, G., & Terpenny, J. P. (2005). Interactive preference incorporation in evolutionary engineering design. In Y. Jin (Ed.), Knowledge incorporation in evolutionary computation. Berlin: Springer. Google Scholar
Wilson, P. B., & MacLeod, M. D. (1993). Low implementation cost IIR digital filter design using genetic algorithms. In IEE/IEEE workshop on natural algorithms in signal processing (pp. 4/1–4/8). Chelmsford, UK. Google Scholar
Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82. Article Google Scholar
Youssef, H. A., Kinsella, A., & Waddington, J. L. (1991). Evidence for geographical variations in the prevalence of schizophrenia in rural Ireland. Archives of General Psychiatry, 48, 254–258. Article Google Scholar
Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271. Article Google Scholar
Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: improving the strength of Pareto evolutionary algorithm. In K. Giannakoglou, D. Tsahalis, J. Periaux, P. Papailou, & T. Fogarty (Eds.), Evolutionary methods for design, optimization and control with applications to industrial problems (EUROGEN 2001), Athens. Google Scholar
Zydallis, J. B., Veldhuizen, D. A. V., & Lamont, G. B. (2001). Statistical comparison of multiobjective evolutionary algorithms including the MOMGA–II. In E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello, & D. Corne (Eds.), Lecture notes in computer science: Vol. 1993. First international conference on evolutionary multi-criterion optimization (pp. 226–240). Berlin: Springer. Chapter Google Scholar