Biological Mechanisms of Physical Activity in Preventing Cognitive Decline (original) (raw)
Abraham WC, Logan B, Greenwood JM, Dragunow M (2002) Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J Neurosci 22:9626–9634 ArticleCASPubMedPubMed Central Google Scholar
Adams JP, Roberson ED, English JD, Selcher JC, Sweatt JD (2000) MAP-K regulation of gene expression in the central nervous system. Acta Neurobiol Exp (Warsz) 60:377–394 ArticleCASPubMed Google Scholar
Adlard PA, Perreau VM, Cotman CW (2005) The exercise-induced expression of BDNF within the hippocampus varies across life-span. Neurobiol Aging 26:511–520 ArticleCASPubMed Google Scholar
Ajmani RS, Metter EJ, Jaykumar R, Ingram DK, Spangler EL, Abugo OO et al (2000) Hemodynamic changes during aging associated with cerebral blood flow and impaired cognitive function. Neurobiol Aging 21:257–269 ArticleCASPubMed Google Scholar
Akagi S, Mizoguchi A, Sobue K, Nakamura H, Ide C (1996) Localization of synapsin I in normal fibers and regenerating axonal sprouts of the rat sciatic nerve. Histochem Cell Biol 105:365–373 ArticleCASPubMed Google Scholar
Ang ET, Wong PTH, Mochhala S, Ng YK (2003) Neuroprotection associated with running: Is it a result of increased endogenous neurotrophic factors? Neuroscience 118:335–345 ArticleCASPubMed Google Scholar
Angevaren M, Aufdemkampe G, Verhaar HJ, Aleman A, Vanhees L (2008) Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst. Rev. 3:CD005381
Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970 ArticleCASPubMed Google Scholar
Berchtold NC, Kesslak JP, Pike CJ, Adlard PA, Cotman CW (2001) Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus. Eur J Neurosci 14:1992–2002 ArticleCASPubMed Google Scholar
Berchtold NC, Kesslak JP, Cotman CW (2002) Hippocampal brain-derived neurotrophic gene regulation by exercise and the medial septum. J Neurosci Res 68:511–521 ArticleCASPubMed Google Scholar
Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT (1990) Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci USA 87:5568–5572 ArticleCASPubMedPubMed Central Google Scholar
Black JE, Zelazny AM, Greenough WT (1991) Capillary and mitochondrial support of neural plasticity in adult rat visual cortex. Exp Neurol 111:204–209 ArticleCASPubMed Google Scholar
Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39 ArticleCASPubMed Google Scholar
Blomstrand E, Perrett D, Parry-Billings M, Newsholme EA (1989) Effect of sustained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions in the rat. Acta Physiol Scand 136:473–481 ArticleCASPubMed Google Scholar
Blum S, Moore AN, Adams F, Dash PK (1999) A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J Neurosci 19:3535–3544 ArticleCASPubMedPubMed Central Google Scholar
Blumenthal JA, Maden DJ (1988) Effects of aerobic exercise training, age, and physical fitness on memory-search performance. Psychol Aging 3:280–285 ArticleCASPubMed Google Scholar
Bolton MM, Pittman AJ, Lo DC (2000) Brain-derived neurotrophic factor differentially regulates excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci 20:3221–3232 ArticleCASPubMedPubMed Central Google Scholar
Brezun JM, Daszuta A (1999) Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience 89:999–1002 ArticleCASPubMed Google Scholar
Brezun JM, Daszuta A (2000) Serotonin may stimulate granule cell proliferation in the adult hippocampus, as observed in rats grafted with foetal raphe neurons. Eur J Neurosci 12:391–396 ArticleCASPubMed Google Scholar
Brown J, Cooper-Kuhn CM, Kempermann G, Van Praag H, Winkler J, Gage FH et al (2003) Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci 17:2042–2046 ArticlePubMed Google Scholar
Cammarota M, de Stein ML, Paratcha G, Bevilaqua LR, Izquierdo I, Medina JH (2000) Rapid and transient learning-associated increase in NMDA NR1 subunit in the rat hippocampus. Neurochem Res 25:567–572 ArticleCASPubMed Google Scholar
Carro E, Nunez A, Busiguina S, Torres-Aleman I (2000) Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 20:2926–2933 ArticleCASPubMedPubMed Central Google Scholar
Carro E, Trejo LJ, Busiguina S, Torres-Aleman I (2001) Circulating insulin-like growth factor 1 mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci 21:5678–5684 ArticleCASPubMedPubMed Central Google Scholar
Chennaoui M, Drogou C, Gomez-Merino D (2008) Effects of physical training on IL-1beta, IL-6 and IL-1ra concentrations in various brain areas of the rat. Eur Cytokine Netw 19:8–14 CASPubMed Google Scholar
Churchill JD, Galvez R, Colcombe S, Rodney AS, Kramer AF, William TG (2002) Exercise, experience and the aging brain. Neurobiol Aging 23:941–955 ArticlePubMed Google Scholar
Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14:125–130 ArticlePubMed Google Scholar
Connor B, Young D, Yan Q, Faull RL, Synek B, Dragunow M (1997) Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Mol Brain Res 49:71–81 ArticleCASPubMed Google Scholar
Cracchiolo JR, Mori T, Nazian SJ, Tan J, Potter H, Arendash GW (2007) Enhanced cognitive activity—over and above social or physical activity—is required to protect Alzheimer’s mice against cognitive impairment, reduce Aβ deposition, and increase synaptic immunoreactivity. Neurobiol Learn Mem 88:277–294 ArticleCASPubMedPubMed Central Google Scholar
Czurko A, Hirase H, Csicsvari J, Buzsaki G (1999) Sustained activation of hippocampal pyramidal cells by ‘space clamping’ in a running wheel. Eur J Neurosci 11:344–352 ArticleCASPubMed Google Scholar
Dalsgaard MK, Quistorff B, Danielsen ER, Selmer C, Vogelsang T, Secher NH (2004) A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain. J Physiol Lond 554:571–578 ArticleCASPubMed Google Scholar
Dietrich MO, Andrews ZB, Horvath TL (2008) Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J Neurosci 28:10766–10771 ArticleCASPubMedPubMed Central Google Scholar
Ding Y, Li J, Luan X, Ding YH, Lai Q, Rafols JA et al (2004) Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience 124:583–591 ArticleCASPubMed Google Scholar
Dishman RK, Renner KJ, Youngstedt SD, Reigle TG, Bunnel BN, Burke KA et al (1997) Activity wheel running reduces escape latency and alters brain monoamine levels after footshock. Brain Res Bull 42:399–406 ArticleCASPubMed Google Scholar
Dishman RK, Renner KJ, White-Welkley JE, Bunnell BN (2000) Treadmill exercise training augments brain norepinephrine response to familiar and novel stress. Brain Res Bull 52:337–342 ArticleCASPubMed Google Scholar
Eadie BD, Redila VA, Christie BR (2005) Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dentritic complexity, and spine density. J Comp Neurol 486:39–47 ArticlePubMed Google Scholar
English JD, Sweatt JD (1996) Activation of p42 mitogen-activated protein kinase in hippocampal long-term potentiation. J Biol Chem 271:24329–24332 ArticleCASPubMed Google Scholar
English JD, Sweatt JD (1997) A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem 272:19103–19106 ArticleCASPubMed Google Scholar
Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317 ArticleCASPubMed Google Scholar
Farmer J, Zhao X, van Praag H, Wodtke K, Gage FH, Christie BR (2004) Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124:71–79 ArticleCASPubMed Google Scholar
Figurov A, Pozzo-Miller LD, Olafsson P, Wang T, Lu B (1996) Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381:706–709 ArticleCASPubMed Google Scholar
Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME (1997) CREB: a major mediator of neuronal neurotrophin responses. Neuron 19:1031–1047 ArticleCASPubMed Google Scholar
Fordyce DE, Starnes JW, Farrar RP (1991) Compensation of the age-related decline in hippocampal muscarinic receptor density through daily exercise or underfeeding. J Gerontol 46:245–248 Article Google Scholar
Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83:1140–1144 ArticleCASPubMedPubMed Central Google Scholar
Friedland RP, Fritsch T, Smyth KA, Koss E, Lerner AJ, Chen CH et al (2001) Patients with Alzheimer’s disease have reduced activities in midlife compared with healthy control-group members. Proc Natl Acad Sci USA 98:3440–3445 ArticleCASPubMedPubMed Central Google Scholar
Gomez-Pinilla F, Dao L, So V (1997) Physical exercise induces FGF-2 and its mRNA in the hippocampus. Brain Res 764:1–8 ArticleCASPubMed Google Scholar
Gould E, Tanapat P (1997) Lesion-induced proliferation of neuronal progenitors in the dentate gyrus of the adult rat. Neuroscience 80:427–436 ArticleCASPubMed Google Scholar
Greengard P, Valtorta F, Czernik AJ, Benfenati F (1993) Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259:780–785 ArticleCASPubMed Google Scholar
Greenwood BN, Foley TE, Day HE, Campisi J, Hammack SH, Campeau S et al (2003) Freewheel running prevents learned helplessness/behavioural depression: role of dorsal raphe serotoninergic neurons. J Neurosci 23:2889–2898 ArticleCASPubMedPubMed Central Google Scholar
Greenwood BN, Foley TE, Burhans DJ, Maiser SF, Fleshner M (2005) The consequences of uncontrollable stress are sensitive to the duration of prior wheel running. Brain Res 1033:164–178 ArticleCASPubMed Google Scholar
Hamer M, Chida Y (2009) Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med 39:3–11 ArticleCASPubMed Google Scholar
Hardingham G, Arnold FJ, Bading H (2001) Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci 4:261–267 ArticleCASPubMed Google Scholar
Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF et al (2003) Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci 23:6690–6694 ArticleCASPubMedPubMed Central Google Scholar
Helge JW, Stallknecht B, Pedersen BK, Galbo H, Kiens B, Richter EA (2003) The effect of graded exercise on IL-6 release and glucose uptake in skeletal muscle. J Physiol 546:299–305 ArticleCASPubMed Google Scholar
Heyn P, Abreu BC, Ottenbacher KJ (2004) The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil 85:1679–1704 Google Scholar
Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9:58–65 ArticleCASPubMed Google Scholar
Hu S, Ying Z, Gomez-Pinilla F, Frautschy SA (2009) Exercise can increase small heat shock proteins (sHSP) and pre- and post-synaptic proteins in the hippocampus. Brain Res 1249:191–201 ArticleCASPubMed Google Scholar
Ide K, Secher NH (2000) Cerebral blood flow and metabolism during exercise. Prog Neurobiol 61:397–414 ArticleCASPubMed Google Scholar
Isaacs KR, Anderson BJ, Alcantara AA, Black JE, Greenough WT (1992) Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J Cereb Blood Flow Metab 12:110–119 ArticleCASPubMed Google Scholar
Jankowsky JL, Melnikova T, Fadale DJ, Xu GM, Slunt HH, Gonzales V et al (2005) Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer’s disease. J Neurosci 25:5217–5224 ArticleCASPubMedPubMed Central Google Scholar
Jonsdottir I, Schjerling P, Ostrowski K, Asp S, Richter EA, Pedersen BK (2000) Muscle contractions induces interleukin-6 mRNA production in rat skeletal muscles. J Physiol Lond 528:157–163 ArticleCASPubMedPubMed Central Google Scholar
Kempermann G (2008) The neurogenic reserve hypothesis: What is adult hippocampal neurogenesis good for? Trends Neurosci 31:163–169 ArticleCASPubMed Google Scholar
Kim H, Lee SH, Kim SS, Yoo JH, Kim CJ (2007) The influence of maternal treadmill running during pregnancy on short-term memory and hippocampal cell survival in rat pups. Int J Dev Neurosci 25:243–249 ArticlePubMed Google Scholar
Knipper M, Berzaghi M, Blöchl A, Breer H, Thoenen H, Lindholm D (1994) Positive feedback between acetylcholine and the neurotrophins nerve growth factor and brain-derived neurotrophic factor in the rat hippocampus. Eur J Neurosci 6:668–671 ArticleCASPubMed Google Scholar
Knusel B, Winslow JW, Rosenthal A, Burton LE, Seid DP, Nikolics K et al (1991) Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3. Proc Natl Acad Sci USA 88:961–965 ArticleCASPubMedPubMed Central Google Scholar
Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR et al (1999) Ageing, fitness and neurocognitive function. Nature 400:418–419 ArticleCASPubMed Google Scholar
Ladoux A, Frelin C (1993) Hypoxia is a strong inducer of vascular endothelial growth factor mRNA expression in the heart. Biochem Biophys Res Commun 195:1005–1010 ArticleCASPubMed Google Scholar
Lambert TJ, Fernandez SM, Frick KM (2005) Different types of environmental enrichment have discrepant effects on spatial memory and synaptophysin levels in female mice. Neurobiol Learn Mem 83:206–216 ArticleCASPubMed Google Scholar
Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J et al (2008) Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA 300:1027–1037 ArticleCASPubMed Google Scholar
Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM et al (2005) Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell 120:701–713 ArticleCASPubMed Google Scholar
Lindvall O, Kokaia Z, Bengzon J, Elmér E, Kokaia M (1994) Neurotrophins and brain insults. Trends Neurosci 17:490–496 ArticleCASPubMed Google Scholar
Liu J, Solway K, Messing RO, Sharp FR (1998) Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 18:7768–7778 ArticleCASPubMedPubMed Central Google Scholar
Lledo PM, Alonso M, Grubb MS (2006) Adults neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179–193 ArticleCASPubMed Google Scholar
Lopez-Lopez C, LeRoith D, Torres-Aleman I (2004) Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci USA 101:9833–9838 ArticleCASPubMedPubMed Central Google Scholar
Lou SJ, Liu JY, Chang H, Chen PJ (2008) Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats. Brain Res 1210:48–55 ArticleCASPubMed Google Scholar
Ma YL, Wang HL, Wu HC, Wei CL, Lee EH (1998) Brain-derived neurotrophic factor antisense oligonucleotide impairs memory retention and inhibits long-term potentiation in rats. Neuroscience 82:957–967 ArticleCASPubMed Google Scholar
MacRae PG, Spirduso WW, Walters TJ, Farrar RP, Wilcox RE (1987) Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolites in presenescent older rats. Psychopharmacology 92:236–240 ArticleCASPubMed Google Scholar
McCloskey DP, Adamo DS, Anderson BJ (2001) Exercise increases metabolic capacity in the motor cortex and striatum, but not in the hippocampus. Brain Res 891:168–175 ArticleCASPubMed Google Scholar
Melloni RH Jr, Apostolides PJ, Hamos JE, De Gennaro LJ (1994) Dynamics of synapsin I gene expression during the establishment and restoration of functional synapses in the rat hippocampus. Neuroscience 58:683–703 ArticleCASPubMed Google Scholar
Middleton L, Kirkland S, Rockwood K (2008) Prevention of CIND by physical activity: different impact on VCI-ND compared with MCI. J Neurol Sci 269:80–84 ArticlePubMed Google Scholar
Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250 ArticleCASPubMed Google Scholar
Molteni R, Ying Z, Gomez-Pinilla F (2002) Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur J Neurosci 16:1107–1116 ArticlePubMed Google Scholar
Naylor AS, Persson AI, Eriksson PS, Jonsdottir IH, Thorlin T (2005) Extended voluntary running inhibits exercise-induced adult hippocampal progenitor proliferation in the spontaneously hypertensive rat. J Neurophysiol 93:2406–2414 ArticlePubMed Google Scholar
Neeper SA, Gomez-Pinilla F, Choi J, Cotman CW (1995) Exercise and brain neurotrophins. Nature 373:109 ArticleCASPubMed Google Scholar
Nithianantharajah J, Levis H, Murphy M (2004) Environmental enrichment results in cortical and subcortical changes in levels of synaptophysin and PSD-95 proteins. Neurobiol Learn Mem 81:200–210 ArticleCASPubMed Google Scholar
O’Neal HA, Van Hoomissen JD, Holmes PV, Dishman RK (2001) Prepro-galanin mRNA levels are increased in rat locus coeruleus after treadmill exercise training. Neurosci Lett 299:69–72 ArticlePubMed Google Scholar
Olson AK, Eadie BD, Ernst C, Christie BR (2006) Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus 16:250–260 ArticleCASPubMed Google Scholar
Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK (2001) Chemokines are elevated in plasma after strenuous exercise in humans. Eur J Appl Physiol 84:244–245 ArticleCASPubMed Google Scholar
Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17:3727–3738 ArticleCASPubMedPubMed Central Google Scholar
Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16:1137–1145 ArticleCASPubMed Google Scholar
Pilegaard H, Ordway GA, Saltin B, Neufer PD (2000) Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab 279:806–814 Article Google Scholar
Poutlton NP, Muir GD (2005) Treadmill training ameliorates dopamine loss but not behavioral deficits in hemi-parkinsonian rats. Exp Neurol 193:181–197 Article Google Scholar
Pozzo-Miller LD, Gottschalk W, Zhang L, McDermott K, Du J, Gopalakrishnan R et al (1999) Impairments in high frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J Neurosci 19:4972–4983 ArticleCASPubMedPubMed Central Google Scholar
Sadamoto Y, Igase K, Sakanaka M, Sato K, Otsuka H, Sakaki S et al (1998) Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun 253:26–32 ArticleCASPubMed Google Scholar
Satake S, Kuzuya M, Miura H, Asai T, Ramos MA, Muraguchi M et al (1998) Up-regulation of vascular endothelial growth factor in response to glucose deprivation. Biol Cell 90:161–168 ArticleCASPubMed Google Scholar
Silva AJ, Paylor R, Wehner JM, Tonegawa S (1992) Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257:206–211 ArticleCASPubMed Google Scholar
Soares J, Holmes PV, Renner KJ, Edwards GL, Bunnel BN, Dishman RK (1999) Brain noradrenergic responses to foot-shock after chronic activity-wheel running. Behav Neurosci 113:558–566 ArticleCASPubMed Google Scholar
Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD et al (1997) The [14C] deoxyglucose method for the measurement of local glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916 Article Google Scholar
Song DK, Choe B, Bae JH, Park WK, Han IS, Ho WK et al (1998) Brain-derived neurotrophic factor rapidly potentiates synaptic transmission through NMDA, but suppresses it through non-NMDA receptors in rat hippocampal neuron. Brain Res 799:176–179 ArticleCASPubMed Google Scholar
Starkie RL, Rolland J, Angus DJ, Anderson MJ, Febbraio MA (2001) Circulating monocytes are not the source of elevations in plasma IL-6 and TNF-alpha levels after prolonged running. Am J Physiol Cell Physiol 280:769–774 Article Google Scholar
Steensberg A, Febbraio MA, Osada T, Schjerling P, van Hall G, Saltin B et al (2001) Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol 537:633–639 ArticleCASPubMedPubMed Central Google Scholar
Steiner B, Zurborg S, Hörster H, Fabel K, Kepermann G (2008) Differential 24 h responsiveness of prox1-expressing precursor cells in adult hippocampal neurogenesis to physical activity, environmental enrichment, and kainic acid-induced seizures. Neuroscience 154:521–529 ArticleCASPubMed Google Scholar
Sturman MT, Morris MC, Mendes de Leon CF, Bienias JL, Wilson RS, Evans DA (2005) Physical activity, cognitive activity, and cognitive decline in a biracial community population. Arch Neurol 62:1750–1754 ArticlePubMed Google Scholar
Sweatt JD (2001) The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 76:1–10 ArticleCASPubMed Google Scholar
Taaffe DR, Irie F, Masaki KH, Abbott RD, Petrovitch H, Ross GW et al (2008) Physical activity, physical function, and incident dementia in elderly men: the Honolulu–Asia Aging Study. J Gerontol A Biol Sci Med Sci 63:529–535 ArticlePubMed Google Scholar
Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20:709–726 ArticleCASPubMed Google Scholar
Thiele C, Hannah M, Fahrenholz F, Huttner WB (2000) Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2:42–49 ArticleCASPubMed Google Scholar
Tokuyama W, Okuno H, Hashimoto T, Xin Li Y, Miyashita Y (2000) BDNF upregulation during declarative memory formation in monkey inferior temporal cortex. Nat Neurosci 3:1134–1142 ArticleCASPubMed Google Scholar
Tong L, Shen H, Perreau VM, Balazs R, Cotman CW (2001) Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol Dis 8:1046–1056 ArticleCASPubMed Google Scholar
Trejo JL, Carro E, Torres-Aleman EI (2001) Circulating insulin-like growth factor mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21:1628–1634 ArticleCASPubMedPubMed Central Google Scholar
Tsutsumi T, Don BM, Zaichkowsky LD, Delizonna LL (1997) Physical fitness and psychological benefits of strength training in community dwelling older adults. Appl Human Sci 16:257–266 ArticleCASPubMed Google Scholar
Tully T (1997) Regulation of gene expression and its role in long-term memory and synaptic-plasticity. Proc Natl Acad Sci USA 94:4239–4241 ArticleCASPubMedPubMed Central Google Scholar
Uda M, Ishido M, Kami K, Masuhara M (2006) Effects of chronic treadmill running on neurogenesis in the dentate gyrus of the hippocampus of adult rat. Brain Res 1104:64–72 ArticleCASPubMed Google Scholar
van Praag H, Christie BR, Sejnoswski TS, Gage FH (1999a) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96:13427–13431 ArticlePubMedPubMed Central Google Scholar
van Praag H, Kempermann G, Gage FH (1999b) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270 ArticlePubMed Google Scholar
van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25:8680–8685 ArticlePubMedPubMed Central Google Scholar
van Uffelen JG, Chin A, Paw MJ, Hopman-Rock M, van Mechelen W (2008) The effects of exercise on cognition in older adults with and without cognitive decline: a systematic review. Clin J Sport Med 18:486–500 ArticlePubMed Google Scholar
Vaynman S, Gomez-Pinilla F (2006) Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J Neurosci Res 84:699–715 ArticleCASPubMed Google Scholar
Vaynman S, Ying Z, Gomez-Pinilla F (2003) Interplay between BDNF and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience 122:647–657 ArticleCASPubMed Google Scholar
Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20:2580–2590 ArticlePubMed Google Scholar
Vaynman S, Ying Z, Wu A, Gomez-Pinilla F (2006) Coupling energy metabolism with a mechanism to support BDNF mediated synaptic plasticity. Neuroscience 139:1221–1234 ArticleCASPubMed Google Scholar
Verghese J, Lipton RB, Katz M, Hall CB, Derby CA, Kuslansky G et al (2003) Leisure activities and the risk of dementia in the elderly. N Engl J Med 348:2508–2516 ArticlePubMed Google Scholar
Verghese J, Wang C, Katz MJ, Sanders A, Lipton RB (2009) Leisure activities and risk of vascular cognitive impairment in older adults. J Geriatr Psychiatry Neurol 22:110–118 ArticlePubMedPubMed Central Google Scholar
Weuve J, Kang JH, Manson JE, Breteler MMB, Ware JH, Grodstein F (2004) Physical activity, including walking, and cognitive function in older women. JAMA 292:1454–1461 ArticleCASPubMed Google Scholar
Williamson JD, Espeland M, Kritchevsky SB, Newman AB, King AC, Pahor M et al (2009) Changes in cognitive function in a randomized trial of physical activity: results of the lifestyle interventions and independence for elders pilot study. J Gerontol A Biol Sci Med Sci 64:688–694 ArticlePubMed Google Scholar
Wolf SA, Kronenberg G, Lehmann K, Blankenship A, Overall R, Staufenbiel M et al (2006) Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biol Psychiatry 60:1314–1323 ArticleCASPubMed Google Scholar
Xuan AG, Long DH, Gu HG, Yang DD, Hong LP, Leng SL (2008) BDNF improves the effects of neural stem cells on the rat model of Alzheimer’s disease with unilateral lesion of fimbria-fornix. Neurosci Lett 440:331–335 ArticleCASPubMed Google Scholar
Yin JC, Tully T (1996) CREB and the formation of long-term memory. Curr Opin Neurobiol 6:264–268 ArticleCASPubMed Google Scholar
Yin JC, Del Vecchio M, Zhou H, Tully T (1995) CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81:107–115 ArticleCASPubMed Google Scholar
Ying SW, Futter M, Rosenblum K, Webber MJ, Hunt SP, Bliss TV et al (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci 22:1532–1540 ArticleCASPubMedPubMed Central Google Scholar