Facilitated Neurogenesis in the Developing Hippocampus After Intake of Theanine, an Amino Acid in Tea Leaves, and Object Recognition Memory (original) (raw)
Berninger B, Marty S, Zafra F, da Penha Berzaghi M, Thoenen H, Lindholm D (1995) GABAergic stimulation switches from enhancing to repressing BDNF expression in rat hippocampal neurons during maturation in vitro. Development 121:2327–2335 PubMedCAS Google Scholar
Bolling BW, Chen CY, Blumberg JB (2009) Tea and health: preventive and therapeutic usefulness in the elderly? Curr Opin Clin Nutr Metab Care 12:42–48 ArticlePubMedCAS Google Scholar
Bryan J (2008) Psychological effects of dietary components of tea: caffeine and l-theanine. Nutr Rev 66:82–90 ArticlePubMed Google Scholar
Cameron HA, Hazel TG, McKay RD (1998) Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol 36:287–306 ArticlePubMedCAS Google Scholar
Cheng B, Mattson MP (1994) NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults. Brain Res 640:56–67 ArticlePubMedCAS Google Scholar
Cho HS, Kim S, Lee SY, Park JA, Kim SJ, Chun HS (2008) Protective effect of the green tea component, l-theanine on environmental toxins-induced neuronal cell death. Neurotoxicology 29:656–662 ArticlePubMedCAS Google Scholar
Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17:2295–2313 PubMedCAS Google Scholar
Di X, Yan J, Zhao Y, Zhang J, Shi Z, Chang Y, Zhao B (2010) l-Theanine protects the APP (Swedish mutation) transgenic SH-SY5Y cell against glutamate-induced excitotoxicity via inhibition of the NMDA receptor pathway. Neuroscience 168:778–786 ArticlePubMedCAS Google Scholar
Egashira N, Hayakawa K, Mishima K, Kimura H, Iwasaki K, Fujiwara M (2004) Neuroprotective effect of gamma-glutamylethylamide (theanine) on cerebral infarction in mice. Neurosci Lett 363:58–61 ArticlePubMedCAS Google Scholar
Einöther SJ, Martens VE, Rycroft JA, De Bruin EA (2010) l-Theanine and caffeine improve task switching but not intersensory attention or subjective alertness. Appetite 54:406–409 ArticlePubMed Google Scholar
Fukazawa Y, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K (2003) Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38:447–460 ArticlePubMedCAS Google Scholar
Gomez-Ramirez M, Higgins BA, Rycroft JA, Owen GN, Mahoney J, Shpaner M, Foxe JJ (2007) The deployment of intersensory selective attention: a high-density electrical mapping study of the effects of theanine. Clin Neuropharmacol 30:25–38 ArticlePubMedCAS Google Scholar
Gonzalez de Mejia E, Ramirez-Mares MV, Puangpraphant S (2009) Bioactive components of tea: cancer, inflammation and behavior. Brain Behav Immune 23:721–732 ArticleCAS Google Scholar
Graham HN (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21:334–350 ArticlePubMedCAS Google Scholar
Gundersen HJ, Bendtsen TF, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sorensen FB, Vesterby A (1988) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS 96:379–394 ArticlePubMedCAS Google Scholar
Haskell CF, Kennedy DO, Milne AL, Wesnes KA, Scholey AB (2008) The effects of l-theanine, caffeine and their combination on cognition and mood. Biol Psychol 77:113–122 ArticlePubMed Google Scholar
Ickes BR, Pham TM, Sanders LA, Albeck DS, Mohammed AH, Granholm AC (2000) Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp Neurol 164:45–52 ArticlePubMedCAS Google Scholar
Ip NY, Li Y, Yancopoulos GD, Lindsay RM (1993) Cultured hippocampal neurons show responses to BDNF, NT-3, and NT-4, but not NGF. J Neurosci 13:3394–3405 PubMedCAS Google Scholar
Kakuda T, Nozawa A, Sugimoto A, Niino H (2002) Inhibition by theanine of binding of [3H]AMPA, [3H]kainate, and [3H]MDL 105, 519 to glutamate receptors. Biosci Biotechnol Biochem 66:2683–2686 ArticlePubMedCAS Google Scholar
Kee N, Sivalingam S, Boonstra R, Wojtowicz JM (2002) The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Methods 115:97–105 ArticlePubMedCAS Google Scholar
Kelly SP, Gomez-Ramirez M, Montesi JL, Foxe JJ (2008) l-Theanine and caffeine in combination affect human cognition as evidenced by oscillatory alpha-band activity and attention task performance. J Nutr 138:1572S–1577S PubMedCAS Google Scholar
Kernie SG, Liebl DJ, Parada LF (2000) BDNF regulates eating behavior and locomotor activity in mice. EMBO J 19:1290–1300 ArticlePubMedCAS Google Scholar
Kobayashi T, Matsuno K, Murai M, Mita S (1997) Sigma 1 receptor subtype is involved in the facilitation of cortical dopaminergic transmission in the rat brain. Neurochem Res 22:1105–1109 ArticlePubMedCAS Google Scholar
Kobayashi K, Nagato Y, Aoi N, Juneja LR, Kim M, Yamamoto T, Sugimoto S (1998) Effects of l-theanine on the release of α-brain waves in human volunteers. Nippon Nogeikagaku Kaishi 72:153–157 CAS Google Scholar
Lee L, Duan W, Mattson MP (2002) Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 82:1367–1375 ArticlePubMedCAS Google Scholar
Lindholm D, Carroll P, Tzimagiogis G, Thoenen H (1996) Autocrine-paracrine regulation of hippocampal neuron survival by IGF-1 and the neurotrophins BDNF, NT-3 and NT-4. Eur J Neurosci 8:1452–1460 ArticlePubMedCAS Google Scholar
Linnarsson S, Willson CA, Ernfors P (2000) Cell death in regenerating populations of neurons in BDNF mutant mice. Mol Brain Res 75:61–69 ArticlePubMedCAS Google Scholar
Marmigère F, Rage F, Tapia-Arancibia L (2003) GABA–glutamate interaction in the control of BDNF expression in hypothalamic neurons. Neurochem Int 42:353–358 ArticlePubMed Google Scholar
McKay DL, Blumberg HR (2002) The role of tea in human health: an update. J Am Coll Nutr 21:1013 Google Scholar
Nacher J, Crespo C, Mcewen BS (2001) Doublecortin expression in the adult rat telencephalon. Eur J Neurosci 14:629–644 ArticlePubMedCAS Google Scholar
Nakajo Y, Miyamoto S, Nakano Y, Xue JH, Hori T, Yanamoto H (2008) Genetic increase in brain-derived neurotrophic factor levels enhances learning and memory. Brain Res 1241:103–109 ArticlePubMedCAS Google Scholar
Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H (2010) BDNF function and intracellular signaling in neurons. Histol Histopathol 25:237–258 PubMedCAS Google Scholar
Obrietan K, Gao XB, Van Den Pol AN (2002) Excitatory actions of GABA increase BDNF expression via a MAPK-CREB-dependent mechanism: a positive feedback circuit in developing neurons. J Neurophysiol 88:1005–1015 PubMedCAS Google Scholar
Pietá Dias C, Martins de Lima MN, Presti-Torres J, Dornelles A, Garcia VA, Siciliani Scalco F, Rewsaat Guimarães M, Constantino L, Budni P, Dal-Pizzol F, Schröder N (2007) Memantine reduces oxidative damage and enhances long-term recognition memory in aged rats. Neuroscience 146:1719–1725 ArticlePubMed Google Scholar
Shimbo M, Nakamura K, Shi HJ, Kizuki M, Seino K, Inose T, Takano T (2005) Green tea consumption in everyday life and mental health. Public Health Nutr 8:1300–1306 ArticlePubMed Google Scholar
Suh SW, Fan Y, Hong SM, Liu Z, Matsumori Y, Weinstein PR, Swanson RA, Liu J (2005) Hypoglycemia induces transient neurogenesis and subsequent progenitor cell loss in the rat hippocampus. Diabetes 54:500–509 ArticlePubMedCAS Google Scholar
Terashima T, Takido J, Yokogoshi H (1999) Time-dependent changes of amino acids in the serum, liver, brain and urine of rats administered with theanine. Biosci Biotechnol Biochem 63:615–618 ArticlePubMedCAS Google Scholar
Unno T, Suzuki Y, Kakuda T, Hayakawa T, Tsuge H (1999) Metabolism of theanine, gamma-glutamylethylamide, in rats. J Agric Food Chem 47:1593–1596 ArticlePubMedCAS Google Scholar
Wu H, Friedman WJ, Dreyfus CF (2004) Differential regulation of neurotrophin expression in basal forebrain astrocytes by neuronal signals. J Neurosci Res 76:76–85 ArticlePubMedCAS Google Scholar
Yamada T, Terashima T, Wada K, Ueda S, Ito M, Okubo T, Juneja LR, Yokogoshi H (2007) Theanine, r-glutamylethylamide, increases neurotransmission concentrations and neurotrophin mRNA levels in the brain during lactation. Life Sci 81:1247–1255 ArticlePubMedCAS Google Scholar
Yamada T, Terashima T, Honma H, Nagata S, Okubo T, Juneja LR, Yokogoshi H (2008) Effects of theanine, a unique amino acid in tea leaves, on memory in a rat behavioral test. Biosci Biotechnol Biochem 72:1356–1359 ArticlePubMedCAS Google Scholar
Yamada T, Terashima T, Kawano S, Furuno R, Okubo T, Juneja LR, Yokogoshi H (2009) Theanine, gamma-glutamylethylamide, a unique amino acid in tea leaves, modulates neurotransmitter concentrations in the brain striatum interstitium in conscious rats. Amino Acids 36:21–27 ArticlePubMedCAS Google Scholar
Yokogoshi H, Terashima T (2000) Effect of theanine, r-glutamylethylamide, on brain monoamines, striatal dopamine release and some kinds of behavior in rats. Nutrition 16:776–777 ArticlePubMedCAS Google Scholar
Yokogoshi H, Kobayashi M, Mochizuki M, Terashima T (1998) Effect of theanine, r-glutamylethylamide, on brain monoamines and striatal dopamine release in conscious rats. Neurochem Res 23:667–673 ArticlePubMedCAS Google Scholar
Zambon AC, De Costa BR, Kanthasamy AG, Nguyen BQ, Matsumoto RR (1997) Subchronic administration of _N_-[2-(3, 4-dichlorophenyl) ethyl]-_N_-methyl-2-(dimethylamino) ethylamine (BD1047) alters sigma 1 receptor binding. Eur J Pharmacol 324:39–47 ArticlePubMedCAS Google Scholar
Zheng G, Sayama K, Okubo T, Juneja LR, Oguni I (2004) Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo 18:55–62 PubMedCAS Google Scholar