- Sullivan R, Graham CH (2007) Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev 26(2):319–331. doi:10.1007/s10555-007-9062-2
PubMed CAS Google Scholar
- Chan DA, Giaccia AJ (2007) Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev 26(2):333–339. doi:10.1007/s10555-007-9063-1
PubMed CAS Google Scholar
- Cairns RA, Khokha R, Hill RP (2003) Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr Mol Med 3(7):659–671. doi:10.2174/1566524033479447
PubMed CAS Google Scholar
- Rofstad EK (2000) Microenvironment-induced cancer metastasis. Int J Radiat Biol 76(5):589–605. doi:10.1080/095530000138259
PubMed CAS Google Scholar
- Subarsky P, Hill RP (2003) The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis 20(3):237–250. doi:10.1023/A:1022939318102
PubMed CAS Google Scholar
- Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9(Suppl 5):10–17. doi:10.1634/theoncologist.9-90005-10
PubMed CAS Google Scholar
- Milosevic M, Fyles A, Hedley D et al (2004) The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid pressure. Semin Radiat Oncol 14(3):249–258. doi:10.1016/j.semradonc.2004.04.006
PubMed Google Scholar
- Nordsmark M, Eriksen JG, Gebski V et al (2007) Differential risk assessments from five hypoxia specific assays: the basis for biologically adapted individualized radiotherapy in advanced head and neck cancer patients. Radiother Oncol 83(3):389–397. doi:10.1016/j.radonc.2007.04.021
PubMed Google Scholar
- Hockel M, Schlenger K, Aral B et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56(19):4509–4515
PubMed CAS Google Scholar
- Fyles A, Milosevic M, Hedley D et al (2002) Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer. J Clin Oncol 20(3):680–687. doi:10.1200/JCO.20.3.680
PubMed CAS Google Scholar
- Brizel DM, Scully SP, Harrelson JM et al (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56(5):941–943
PubMed CAS Google Scholar
- Cairns RA, Kalliomaki T, Hill RP (2001) Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res 61(24):8903–8908
PubMed CAS Google Scholar
- Cairns RA, Hill RP (2004) Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res 64(6):2054–2061. doi:10.1158/0008-5472.CAN-03-3196
PubMed CAS Google Scholar
- Graeber TG, Osmanian C, Jacks T et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379(6560):88–91. doi:10.1038/379088a0
PubMed CAS Google Scholar
- Erler JT, Bennewith KL, Nicolau M et al (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440(7088):1222–1226. doi:10.1038/nature04695
PubMed CAS Google Scholar
- Krishnamachary B, Berg-Dixon S, Kelly B et al (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63(5):1138–1143
PubMed CAS Google Scholar
- Brizel DM, Schroeder T, Scher RL et al (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51(2):349–353. doi:10.1016/S0360-3016(01)01630-3
PubMed CAS Google Scholar
- Weidner N (1998) Tumoural vascularity as a prognostic factor in cancer patients: the evidence continues to grow. J Pathol 184(2):119–122. doi:10.1002/(SICI)1096-9896(199802)184:2<119::AID-PATH17>3.0.CO;2-D
Google Scholar
- Sundfor K, Lyng H, Rofstad EK (1998) Tumour hypoxia and vascular density as predictors of metastasis in squamous cell carcinoma of the uterine cervix. Br J Cancer 78(6):822–827
PubMed CAS Google Scholar
- West CM, Cooper RA, Loncaster JA et al (2001) Tumor vascularity: a histological measure of angiogenesis and hypoxia. Cancer Res 61(7):2907–2910
PubMed CAS Google Scholar
- Young SD, Marshall RS, Hill RP (1988) Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci USA 85(24):9533–9537. doi:10.1073/pnas.85.24.9533
PubMed CAS Google Scholar
- Stackpole CW, Groszek L, Kalbag SS (1994) Benign-to-malignant B16 melanoma progression induced in two stages in vitro by exposure to hypoxia. J Natl Cancer Inst 86(5):361–367. doi:10.1093/jnci/86.5.361
PubMed CAS Google Scholar
- Rofstad EK, Danielsen T (1999) Hypoxia-induced metastasis of human melanoma cells: involvement of vascular endothelial growth factor-mediated angiogenesis. Br J Cancer 80(11):1697–1707. doi:10.1038/sj.bjc.6690586
PubMed CAS Google Scholar
- Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70. doi:10.1016/S0092-8674(00)81683-9
PubMed CAS Google Scholar
- Woodhouse EC, Chuaqui RF, Liotta LA (1997) General mechanisms of metastasis. Cancer 80(8 Suppl):1529–1537. doi:10.1002/(SICI)1097-0142(19971015)80:8+<1529::AID-CNCR2>3.0.CO;2-F
Google Scholar
- McDonnell CO, Hill AD, McNamara DA et al (2000) Tumour micrometastases: the influence of angiogenesis. Eur J Surg Oncol 26(2):105–115. doi:10.1053/ejso.1999.0753
PubMed CAS Google Scholar
- Baluk P, Morikawa S, Haskell A et al (2003) Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 163(5):1801–1815
PubMed Google Scholar
- Kallinowski F, Tyler G, Mueller-Klieser W et al (1989) Growth-related changes of oxygen consumption rates of tumor cells grown in vitro and in vivo. J Cell Physiol 138(1):183–191. doi:10.1002/jcp.1041380124
PubMed CAS Google Scholar
- Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465
PubMed CAS Google Scholar
- Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9(4):539–549
PubMed CAS Google Scholar
- Franko AJ, Sutherland RM (1978) Rate of death of hypoxic cells in multicell spheroids. Radiat Res 76(3):561–572. doi:10.2307/3574805
PubMed CAS Google Scholar
- Durand RE, Raleigh JA (1998) Identification of nonproliferating but viable hypoxic tumor cells in vivo. Cancer Res 58(16):3547–3550
PubMed CAS Google Scholar
- Brown JM (1979) Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism for reoxygenation. Br J Radiol 52:650–656
PubMed CAS Google Scholar
- Sutherland RM, Franko AJ (1980) On the nature of the radiobiologically hypoxic fraction in tumors. Int J Radiat Oncol Biol Phys 6(1):117–120
PubMed CAS Google Scholar
- Bennewith KL, Durand RE (2004) Quantifying transient hypoxia in human tumor xenografts by flow cytometry. Cancer Res 64(17):6183–6189. doi:10.1158/0008-5472.CAN-04-0289
PubMed CAS Google Scholar
- Lanzen J, Braun RD, Klitzman B et al (2006) Direct demonstration of instabilities in oxygen concentrations within the extravascular compartment of an experimental tumor. Cancer Res 66(4):2219–2223. doi:10.1158/0008-5472.CAN-03-2958
PubMed CAS Google Scholar
- Brurberg KG, Thuen M, Ruud EB et al (2006) Fluctuations in pO2 in irradiated human melanoma xenografts. Radiat Res 165(1):16–25. doi:10.1667/RR3491.1
PubMed CAS Google Scholar
- Holmquist L, Jogi A, Pahlman S (2005) Phenotypic persistence after reoxygenation of hypoxic neuroblastoma cells. Int J Cancer 116(2):218–225. doi:10.1002/ijc.21024
PubMed CAS Google Scholar
- Subarsky P, Hill RP (2008) Graded hypoxia modulates the invasive potential of HT1080 fibrosarcoma and MDA MB231 carcinoma cells. Clin Exp Metastasis 25(3):253–264
PubMed CAS Google Scholar
- Zhang L, Hill RP (2004) Hypoxia enhances metastatic efficiency by up-regulating Mdm2 in KHT cells and increasing resistance to apoptosis. Cancer Res 64(12):4180–4189. doi:10.1158/0008-5472.CAN-03-3038
PubMed CAS Google Scholar
- Zhang L, Hill RP (2007) Hypoxia enhances metastatic efficiency in HT1080 fibrosarcoma cells by increasing cell survival in lungs, not cell adhesion and invasion. Cancer Res 67(16):7789–7797. doi:10.1158/0008-5472.CAN-06-4221
PubMed CAS Google Scholar
- Folkman J (1974) Tumor angiogenesis. Adv Cancer Res 19:331–358. doi:10.1016/S0065-230X(08)60058-5
PubMed CAS Google Scholar
- Dvorak HF, Nagy JA, Feng D et al (1999) Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 237:97–132
PubMed CAS Google Scholar
- Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7(8):345–350. doi:10.1016/S1471-4914(01)02090-1
PubMed CAS Google Scholar
- Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007; (407): cm8
- Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732. doi:10.1038/nrc1187
PubMed CAS Google Scholar
- Zhou J, Schmid T, Schnitzer S et al (2006) Tumor hypoxia and cancer progression. Cancer Lett 237(1):10–21. doi:10.1016/j.canlet.2005.05.028
PubMed CAS Google Scholar
- Hirota K, Semenza GL (2006) Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 59(1):15–26. doi:10.1016/j.critrevonc.2005.12.003
PubMed Google Scholar
- Mabjeesh NJ, Amir S (2007) Hypoxia-inducible factor (HIF) in human tumorigenesis. Histol Histopathol 22(5):559–572
PubMed CAS Google Scholar
- Semenza GL, Nejfelt MK, Chi SM et al (1991) Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci USA 88(13):5680–5684. doi:10.1073/pnas.88.13.5680
PubMed CAS Google Scholar
- Bardos JI, Ashcroft M (2005) Negative and positive regulation of HIF-1: a complex network. Biochim Biophys Acta 1755(2):107–120
PubMed CAS Google Scholar
- Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 90(9):4304–4308. doi:10.1073/pnas.90.9.4304
PubMed CAS Google Scholar
- Gruber M, Simon MC (2006) Hypoxia-inducible factors, hypoxia, and tumor angiogenesis. Curr Opin Hematol 13(3):169–174. doi:10.1097/01.moh.0000219663.88409.35
PubMed CAS Google Scholar
- Brahimi-Horn C, Pouyssegur J (2006) The role of the hypoxia-inducible factor in tumor metabolism growth and invasion. Bull Cancer 93(8):E73–E80
PubMed Google Scholar
- Mizukami Y, Kohgo Y, Chung DC (2007) Hypoxia inducible factor-1 independent pathways in tumor angiogenesis. Clin Cancer Res 13(19):5670–5674. doi:10.1158/1078-0432.CCR-07-0111
PubMed CAS Google Scholar
- Maxwell PH, Dachs GU, Gleadle JM et al (1997) Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 94(15):8104–8109. doi:10.1073/pnas.94.15.8104
PubMed CAS Google Scholar
- Aragones J, Schneider M, Van Geyte K et al (2008) Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genet 40(2):170–180. doi:10.1038/ng.2007.62
PubMed CAS Google Scholar
- Coleman ML, Ratcliffe PJ (2007) Oxygen sensing and hypoxia-induced responses. Essays Biochem 43:1–15. doi:10.1042/BSE0430001
PubMed CAS Google Scholar
- Maynard MA, Ohh M (2007) The role of hypoxia-inducible factors in cancer. Cell Mol Life Sci 64(16):2170–2180. doi:10.1007/s00018-007-7082-2
PubMed CAS Google Scholar
- Rocha S (2007) Gene regulation under low oxygen: holding your breath for transcription. Trends Biochem Sci 32(8):389–397. doi:10.1016/j.tibs.2007.06.005
PubMed CAS Google Scholar
- Liu YL, Yu JM, Song XR et al (2006) Regulation of the chemokine receptor CXCR4 and metastasis by hypoxia-inducible factor in non small cell lung cancer cell lines. Cancer Biol Ther 5(10):1320–1326
PubMed CAS Google Scholar
- Raval RR, Lau KW, Tran MG et al (2005) Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25(13):5675–5686. doi:10.1128/MCB.25.13.5675-5686.2005
PubMed CAS Google Scholar
- Winter SC, Shah KA, Han C et al (2006) The relation between hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression with anemia and outcome in surgically treated head and neck cancer. Cancer 107(4):757–766. doi:10.1002/cncr.21983
PubMed CAS Google Scholar
- Maynard MA, Qi H, Chung J et al (2003) Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem 278(13):11032–11040. doi:10.1074/jbc.M208681200
PubMed CAS Google Scholar
- Gu YZ, Moran SM, Hogenesch JB et al (1998) Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 7(3):205–213
PubMed CAS Google Scholar
- Makino Y, Cao R, Svensson K et al (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414(6863):550–554. doi:10.1038/35107085
PubMed CAS Google Scholar
- Berra E, Benizri E, Ginouves A et al (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 22(16):4082–4090. doi:10.1093/emboj/cdg392
PubMed CAS Google Scholar
- Appelhoff RJ, Tian YM, Raval RR et al (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279(37):38458–38465. doi:10.1074/jbc.M406026200
PubMed CAS Google Scholar
- Hewitson KS, Schofield CJ, Ratcliffe PJ (2007) Hypoxia-inducible factor prolyl-hydroxylase: purification and assays of PHD2. Meth Enzymol 435:25–42. doi:10.1016/S0076-6879(07)35002-7
PubMed CAS Google Scholar
- D’Angelo G, Duplan E, Boyer N et al (2003) Hypoxia up-regulates prolyl hydroxylase activity: a feedback mechanism that limits HIF-1 responses during reoxygenation. J Biol Chem 278(40):38183–38187. doi:10.1074/jbc.M302244200
PubMed CAS Google Scholar
- Erez N, Milyavsky M, Eilam R et al (2003) Expression of prolyl-hydroxylase-1 (PHD1/EGLN2) suppresses hypoxia inducible factor-1alpha activation and inhibits tumor growth. Cancer Res 63(24):8777–8783
PubMed CAS Google Scholar
- Moeller BJ, Cao Y, Vujaskovic Z et al (2003) Reactive oxygen species and hypoxia inducible factor-1alpha serve as important vascular stabilizing elements in tumors following radiotherapy. Int J Radiat Oncol Biol Phys 57(2 Suppl):S320–S321. doi:10.1016/S0360-3016(03)01198-2
Google Scholar
- Semenza GL, Prabhakar NR (2007) HIF-1-dependent respiratory, cardiovascular, and redox responses to chronic intermittent hypoxia. Antioxid Redox Signal 9(9):1391–1396. doi:10.1089/ars.2007.1691
PubMed CAS Google Scholar
- Radisky DC (2005) Epithelial-mesenchymal transition. J Cell Sci 118:4325–4326. doi:10.1242/jcs.02552
PubMed CAS Google Scholar
- Bonitsis N, Batistatou A, Karantima S et al (2006) The role of cadherin/catenin complex in malignant melanoma. Exp Oncol 28(3):187–193
PubMed CAS Google Scholar
- Bienz M (2005) beta-Catenin: a pivot between cell adhesion and Wnt signalling. Curr Biol 15(2):R64–R67. doi:10.1016/j.cub.2004.12.058
PubMed CAS Google Scholar
- Hotz B, Arndt M, Dullat S et al (2007) Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res 13(16):4769–4776. doi:10.1158/1078-0432.CCR-06-2926
PubMed CAS Google Scholar
- Imai T, Horiuchi A, Wang C et al (2003) Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol 163(4):1437–1447
PubMed CAS Google Scholar
- Kokura S, Yoshida N, Imamoto E et al (2004) Anoxia/reoxygenation down-regulates the expression of E-cadherin in human colon cancer cell lines. Cancer Lett 211(1):79–87. doi:10.1016/j.canlet.2004.01.030
PubMed CAS Google Scholar
- Tanimoto K, Yoshiga K, Eguchi H, et al (2003) Hypoxia-inducible factor-1{alpha} polymorphisms associated with enhanced transactivation capacity, implying clinical significance. Carcinogenesis 24(11):1779–1783
Google Scholar
- Kurrey NK, A K, Bapat SA (2005) Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol 97(1):155–165. doi:10.1016/j.ygyno.2004.12.043
PubMed CAS Google Scholar
- Davidson NE, Sukumar S (2005) Of Snail, mice, and women. Cancer Cell 8(3):173–174. doi:10.1016/j.ccr.2005.08.006
PubMed CAS Google Scholar
- Chang Q, Qin R, Huang T et al (2006) Effect of antisense hypoxia-inducible factor 1alpha on progression, metastasis, and chemosensitivity of pancreatic cancer. Pancreas 32(3):297–305. doi:10.1097/00006676-200604000-00010
PubMed CAS Google Scholar
- Arao S, Masumoto A, Otsuki M (2000) Beta1 integrins play an essential role in adhesion and invasion of pancreatic carcinoma cells. Pancreas 20(2):129–137. doi:10.1097/00006676-200003000-00004
PubMed CAS Google Scholar
- Andreasen PA, Egelund R, Petersen HH (2000) The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 57(1):25–40. doi:10.1007/s000180050497
PubMed CAS Google Scholar
- Festuccia C, Dolo V, Guerra F et al (1998) Plasminogen activator system modulates invasive capacity and proliferation in prostatic tumor cells. Clin Exp Metastasis 16(6):513–528. doi:10.1023/A:1006590217724
PubMed CAS Google Scholar
- Graham CH, Forsdike J, Fitzgerald CJ et al (1999) Hypoxia-mediated stimulation of carcinoma cell invasiveness via upregulation of urokinase receptor expression. Int J Cancer 80(4):617–623. doi:10.1002/(SICI) 1097-0215(19990209) 80:4<617::AID-IJC22>3.0.CO;2-C
Google Scholar
- Osinsky SP, Ganusevich II, Bubnovskaya LN et al (2005) Hypoxia level and matrix metalloproteinases-2 and -9 activity in Lewis lung carcinoma: correlation with metastasis. Exp Oncol 27(3):202–205
PubMed CAS Google Scholar
- Rofstad EK, Rasmussen H, Galappathi K et al (2002) Hypoxia promotes lymph node metastasis in human melanoma xenografts by up-regulating the urokinase-type plasminogen activator receptor. Cancer Res 62(6):1847–1853
PubMed CAS Google Scholar
- Canning MT, Postovit LM, Clarke SH et al (2001) Oxygen-mediated regulation of gelatinase and tissue inhibitor of metalloproteinases-1 expression by invasive cells. Exp Cell Res 267(1):88–94. doi:10.1006/excr.2001.5243
PubMed CAS Google Scholar
- Sun B, Zhang D, Zhang S et al (2007) Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett 249(2):188–197. doi:10.1016/j.canlet.2006.08.016
PubMed CAS Google Scholar
- Pennacchietti S, Michieli P, Galluzzo M et al (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3(4):347–361. doi:10.1016/S1535-6108(03)00085-0
PubMed Google Scholar
- Corso S, Migliore C, Ghiso E et al (2008) Silencing the MET oncogene leads to regression of experimental tumors and metastases. Oncogene 27(5):684–693
PubMed CAS Google Scholar
- Ratajczak MZ, Zuba-Surma E, Kucia M et al (2006) The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 20(11):1915–1924. doi:10.1038/sj.leu.2404357
PubMed CAS Google Scholar
- Ben-Baruch A (2008) Organ selectivity in metastasis: regulation by chemokines and their receptors. Clin Exp Metastasis 25(4):345–356
PubMed CAS Google Scholar
- Nagasawa T (2000) A chemokine, SDF-1/PBSF, and its receptor, CXC chemokine receptor 4, as mediators of hematopoiesis. Int J Hematol 72(4):408–411
PubMed CAS Google Scholar
- Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56. doi:10.1038/35065016
PubMed CAS Google Scholar
- Engl T, Relja B, Blumenberg C et al (2006) Prostate tumor CXC-chemokine profile correlates with cell adhesion to endothelium and extracellular matrix. Life Sci 78(16):1784–1793. doi:10.1016/j.lfs.2005.08.019
PubMed CAS Google Scholar
- Engl T, Relja B, Marian D et al (2006) CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia (New York, N.Y.) 8(4):290–301. 10.1593/neo.05694
- Schimanski CC, Bahre R, Gockel I et al (2006) Dissemination of hepatocellular carcinoma is mediated via chemokine receptor CXCR4. Br J Cancer 95(2):210–217. doi:10.1038/sj.bjc.6603251
PubMed CAS Google Scholar
- Wykoff CC, Pugh CW, Harris AL et al (2001) The HIF pathway: implications for patterns of gene expression in cancer. Novartis Found Symp 240:212–225 discussion 25–31
Article PubMed CAS Google Scholar
- Pan J, Mestas J, Burdick MD et al (2006) Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Mol Cancer 5:56. doi:10.1186/1476-4598-5-56
PubMed Google Scholar
- Erler JT, Giaccia AJ (2006) Lysyl oxidase mediates hypoxic control of metastasis. Cancer Res 66(21):10238–10241. doi:10.1158/0008-5472.CAN-06-3197
PubMed CAS Google Scholar
- Denko NC, Fontana LA, Hudson KM et al (2003) Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22(37):5907–5914. doi:10.1038/sj.onc.1206703
PubMed CAS Google Scholar
- Abedi H, Zachary I (1997) Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem 272(24):15442–15451. doi:10.1074/jbc.272.24.15442
PubMed CAS Google Scholar
- Isaacs JS, Jung YJ, Mimnaugh EG et al (2002) Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem 277(33):29936–29944. doi:10.1074/jbc.M204733200
PubMed CAS Google Scholar
- Rousseau S, Houle F, Kotanides H et al (2000) Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol Chem 275(14):10661–10672. doi:10.1074/jbc.275.14.10661
PubMed CAS Google Scholar
- Siesser PM, Hanks SK (2006) The signaling and biological implications of FAK overexpression in cancer. Clin Cancer Res 12(111):3233–3237. doi:10.1158/1078-0432.CCR-06-0456
PubMed CAS Google Scholar
- Zhu Y, Denhardt DT, Cao H et al (2005) Hypoxia upregulates osteopontin expression in NIH-3T3 cells via a Ras-activated enhancer. Oncogene 24(43):6555–6563
PubMed CAS Google Scholar
- Wai PY, Kuo PC (2004) The role of Osteopontin in tumor metastasis. J Surg Res 121(2):228–241. doi:10.1016/j.jss.2004.03.028
PubMed CAS Google Scholar
- Tuck AB, Arsenault DM, O’Malley FP et al (1999) Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells. Oncogene 18(29):4237–4246. doi:10.1038/sj.onc.1202799
PubMed CAS Google Scholar
- Tuck AB, O’Malley FP, Singhal H et al (1997) Osteopontin and p53 expression are associated with tumor progression in a case of synchronous, bilateral, invasive mammary carcinomas. Arch Pathol Lab Med 121(6):578–584
PubMed CAS Google Scholar
- Tuck AB, O’Malley FP, Singhal H et al (1998) Osteopontin expression in a group of lymph node negative breast cancer patients. Int J Cancer 79(5):502–508. doi:10.1002/(SICI)1097-0215(19981023)79:5<502::AID-IJC10>3.0.CO;2-3
Google Scholar
- Thalmann GN, Sikes RA, Devoll RE et al (1999) Osteopontin: possible role in prostate cancer progression. Clin Cancer Res 5(8):2271–2277
PubMed CAS Google Scholar
- Agrawal D, Chen T, Irby R et al (2002) Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J Natl Cancer Inst 94(7):513–521
PubMed CAS Google Scholar
- Yeatman TJ, Chambers AF (2003) Osteopontin and colon cancer progression. Clin Exp Metastasis 20(1):85–90. doi:10.1023/A:1022502805474
PubMed CAS Google Scholar
- Le QT, Sutphin PD, Raychaudhuri S et al (2003) Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clin Cancer Res 9(1):59–67
PubMed CAS Google Scholar
- Overgaard J, Eriksen JG, Nordsmark M et al (2005) Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncol 6(10):757–764. doi:10.1016/S1470-2045(05)70292-8
PubMed CAS Google Scholar
- Bramwell VH, Tuck AB, Wilson SM et al (2005) Expression of osteopontin and HGF/met in adult soft tissue tumors. Cancer Biol Ther 4(12):1336–1341
Article PubMed CAS Google Scholar
- Senger DR, Galli SJ, Dvorak AM et al (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219(4587):983–985. doi:10.1126/science.6823562
PubMed CAS Google Scholar
- Shweiki D, Itin A, Soffer D et al (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359(6398):843–845. doi:10.1038/359843a0
PubMed CAS Google Scholar
- Forsythe JA, Jiang BH, Iyer NV et al (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16(9):4604–4613
PubMed CAS Google Scholar
- Mizukami Y, Li J, Zhang X et al (2004) Hypoxia-inducible factor-1-independent regulation of vascular endothelial growth factor by hypoxia in colon cancer. Cancer Res 64(5):1765–1772. doi:10.1158/0008-5472.CAN-03-3017
PubMed CAS Google Scholar
- Veikkola T, Karkkainen M, Claesson-Welsh L et al (2000) Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 60(2):203–212
PubMed CAS Google Scholar
- Rofstad EK, Danielsen T (1998) Hypoxia-induced angiogenesis and vascular endothelial growth factor secretion in human melanoma. Br J Cancer 77(6):897–902
PubMed CAS Google Scholar
- Solorzano CC, Baker CH, Bruns CJ et al (2001) Inhibition of growth and metastasis of human pancreatic cancer growing in nude mice by PTK 787/ZK222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. Cancer Biother Radiopharm 16(5):359–370. doi:10.1089/108497801753354267
PubMed CAS Google Scholar
- Kanayama H, Yano S, Kim SJ et al (1999) Expression of vascular endothelial growth factor by human renal cancer cells enhances angiogenesis of primary tumors and production of ascites but not metastasis to the lungs in nude mice. Clin Exp Metastasis 17(10):831–840. doi:10.1023/A:1006792007063
PubMed CAS Google Scholar
- Jang A, Hill RP (1997) An examination of the effects of hypoxia, acidosis, and glucose starvation on the expression of metastasis-associated genes in murine tumor cells. Clin Exp Metastasis 15(5):469–483. doi:10.1023/A:1018470709523
PubMed CAS Google Scholar
- Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104(8):2224–2234. doi:10.1182/blood-2004-03-1109
PubMed CAS Google Scholar
- Knowles HJ, Harris AL (2007) Macrophages and the hypoxic tumour microenvironment. Front Biosci 12:4298–4314. doi:10.2741/2389
PubMed CAS Google Scholar
- Desbaillets I, Diserens AC, Tribolet N et al (1997) Upregulation of interleukin 8 by oxygen-deprived cells in glioblastoma suggests a role in leukocyte activation, chemotaxis, and angiogenesis. J Exp Med 186(8):1201–1212. doi:10.1084/jem.186.8.1201
PubMed CAS Google Scholar
- Yoshida A, Yoshida S, Khalil AK et al (1998) Role of NF-kappaB-mediated interleukin-8 expression in intraocular neovascularization. Invest Ophthalmol Vis Sci 39(7):1097–1106
PubMed CAS Google Scholar
- Moghaddam A, Zhang HT, Fan TP et al (1995) Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc Natl Acad Sci USA 92(4):998–1002. doi:10.1073/pnas.92.4.998
PubMed CAS Google Scholar
- Harris AL, Zhang H, Moghaddam A et al (1996) Breast cancer angiogenesis––new approaches to therapy via antiangiogenesis, hypoxic activated drugs, and vascular targeting. Breast Cancer Res Treat 38(1):97–108. doi:10.1007/BF01803788
PubMed CAS Google Scholar
- Slavin J (1995) Fibroblast growth factors: at the heart of angiogenesis. Cell Biol Int 19(5):431–444. doi:10.1006/cbir.1995.1087
PubMed CAS Google Scholar
- Rofstad EK, Halsor EF (2000) Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Res 60(17):4932–4938
PubMed CAS Google Scholar
- Stubbs M, McSheehy PM, Griffiths JR et al (2000) Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 6(1):15–19. doi:10.1016/S1357-4310(99)01615-9
PubMed CAS Google Scholar
- Raghunand N, Gatenby RA, Gillies RJ (2003) Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol 76(Suppl 1):S11–S22
PubMed Google Scholar
- Bartrons R, Caro J (2007) Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenerg Biomembr 39(3):223–229. doi:10.1007/s10863-007-9080-3
PubMed CAS Google Scholar
- Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899. doi:10.1038/nrc1478
PubMed CAS Google Scholar
- Gordan JD, Simon MC (2007) Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev 17(1):71–77. doi:10.1016/j.gde.2006.12.006
PubMed CAS Google Scholar
- Semenza GL (2007) HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg Biomembr 39(3):231–234. doi:10.1007/s10863-007-9081-2
PubMed CAS Google Scholar
- Schlappack OK, Zimmermann A, Hill RP (1991) Glucose starvation and acidosis: effect on experimental metastatic potential, DNA content and MTX resistance of murine tumour cells. Br J Cancer 64(4):663–670
PubMed CAS Google Scholar
- Rofstad EK, Mathiesen B, Kindem K et al (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66(13):6699–6707. doi:10.1158/0008-5472.CAN-06-0983
PubMed CAS Google Scholar
- Moellering RE, Black KC, Krishnamurty C et al (2008) Acid treatment of melanoma cells selects for invasive phenotypes. Clin Exp Metastasis 25(4):411–425
PubMed CAS Google Scholar
- Kalliomaki T, Hill RP (2004) Effects of tumour acidification with glucose + MIBG on the spontaneous metastatic potential of two murine cell lines. Br J Cancer 90(9):1842–1849
PubMed CAS Google Scholar
- Walenta S, Snyder S, Haroon ZA et al (2001) Tissue gradients of energy metabolites mirror oxygen tension gradients in a rat mammary carcinoma model. Int J Radiat Oncol Biol Phys 51(3):840–848. doi:10.1016/S0360-3016(01)01700-X
PubMed CAS Google Scholar
- Fukumura D, Xu L, Chen Y et al (2001) Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 61(16):6020–6024
PubMed CAS Google Scholar
- Less JR, Posner MC, Boucher Y et al (1992) Interstitial hypertension in human breast and colorectal tumors. Cancer Res 52:6371–6374
PubMed CAS Google Scholar
- Nathanson SD, Nelson L (1994) Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma. Ann Surg Oncol 1:333–338
PubMed CAS Google Scholar
- Curti BD, Urba WJ, Alvord WG et al (1993) Interstitial pressure of subcutaneous nodules in melanoma and lymphoma patients: changes during treatment. Cancer Res 53:2204–2207
PubMed CAS Google Scholar
- Boucher Y, Kirkwood JM, Opacic D (1991) Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res 51:6691–6694
PubMed CAS Google Scholar
- Gutmann R, Leunig M, Feyh J et al (1992) Interstitial hypertension in head and neck tumors in patients: correlation with tumor size. Cancer Res 52:1993–1995
PubMed CAS Google Scholar
- Milosevic M, Fyles A, Hedley D et al (2001) Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements. Cancer Res 61(17):6400–6405
PubMed CAS Google Scholar
- Roh HD, Kalnicki S, Buchsbaum R et al (1991) Interstitial hypertension in carcinoma of uterine cervix in patients: possible correlation with tumor oxygenation and radiation response. Cancer Res 51:6695–6698
PubMed CAS Google Scholar
- Padera TP, Kadambi A, di Tomaso E et al (2002) Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296(5574):1883–1886. doi:10.1126/science.1071420
PubMed CAS Google Scholar
- Leu AJ, Berk DA, Lymboussaki A et al (2000) Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res 60:4324–4327
PubMed CAS Google Scholar
- Lunt SJ, Kalliomaki TM, Brown A et al (2008) Interstitial fluid pressure, vascularity and metastasis in ectopic, orthotopic and spontaneous tumours. BMC Cancer 8(1):2. doi:10.1186/1471-2407-8-2
PubMed Google Scholar
- Jain RK, Tong RT, Munn LL (2007) Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res 67(6):2729–2735. doi:10.1158/0008-5472.CAN-06-4102
PubMed CAS Google Scholar
- Heldin CH, Rubin K, Pietras K et al (2004) High interstitial fluid pressure––an obstacle in cancer therapy. Nat Rev Cancer 4(10):806–813. doi:10.1038/nrc1456
PubMed CAS Google Scholar
- Oldberg A, Kalamajski S, Salnikov AV et al (2007) Collagen-binding proteoglycan fibromodulin can determine stroma matrix structure and fluid balance in experimental carcinoma. Proc Natl Acad Sci USA 104(35):13966–13971. doi:10.1073/pnas.0702014104
PubMed CAS Google Scholar
- Wiig H, Rubin K, Reed RK (2003) New and active role of the interstitium in control of interstitial fluid pressure: potential therapeutic consequences. Acta Anaesthesiol Scand 47:111–121. doi:10.1034/j.1399-6576.2003.00050.x
PubMed CAS Google Scholar
- Pietras K, Sjoblom T, Rubin K et al (2003) PDGF receptors as cancer drug targets. Cancer Cell 3(5):439–443. doi:10.1016/S1535-6108(03)00089-8
PubMed CAS Google Scholar
- Pietras K, Rubin K, Sjoblom T et al (2002) Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res 62(19):5476–5484
PubMed CAS Google Scholar
- Pietras K, Ostman A, Sjoquist M et al (2001) Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res 61(7):2929–2934
PubMed CAS Google Scholar
- Mocanu JD, Yip KW, Alajez NM et al (2007) Imaging the modulation of adenoviral kinetics and biodistribution for cancer gene therapy. Mol Ther 15(5):921–929
PubMed CAS Google Scholar
- Vlahovic G, Ponce AM, Rabbani Z et al (2007) Treatment with imatinib improves drug delivery and efficacy in NSCLC xenografts. Br J Cancer 97(6):735–740. doi:10.1038/sj.bjc.6603941
PubMed CAS Google Scholar
- Lee CG, Heijn M, di Tomaso E et al (2000) Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60(19):5565–5570
PubMed CAS Google Scholar
- Curnis F, Sacchi A, Corti A (2002) Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest 110(4):475–482
PubMed CAS Google Scholar
- Pietras K, Stumm M, Hubert M et al (2003) STI571 enhances the therapeutic index of epothilone B by a tumor-selective increase of drug uptake. Clin Cancer Res 9(10 pt 1):3779–3787
PubMed CAS Google Scholar
- Rofstad EK, Tunheim SH, Mathiesen B et al (2002) Pulmonary and lymph node metastasis is associated with primary tumor interstitial fluid pressure in human melanoma xenografts. Cancer Res 62(3):661–664
PubMed CAS Google Scholar
- Salnikov AV, Heldin NE, Stuhr LB et al (2006) Inhibition of carcinoma cell-derived VEGF reduces inflammatory characteristics in xenograft carcinoma. Int J Cancer 119(12):2795–2802. doi:10.1002/ijc.22217
PubMed CAS Google Scholar
- Boucher Y, Lee I, Jain RK (1995) Lack of general correlation between interstitial fluid pressure and oxygen partial pressure in solid tumors. Microvasc Res 50(2):175–182. doi:10.1006/mvre.1995.1051
PubMed CAS Google Scholar
- Tufto I, Lyng H, Rofstad EK (1996) Interstitial fluid pressure, perfusion rate and oxygen tension in human melanoma xenografts. Br J Cancer 74(Suppl 27):S252–S255
Google Scholar
- Nathanson SD (2003) Insights into the mechanisms of lymph node metastasis. Cancer 98(2):413–423. doi:10.1002/cncr.11464
PubMed Google Scholar
- Baxter L, Jain R (1989) Transport of fluid and macromolecules in tumors I. Role of interstitial pressure and convection. Microvasc Res 37:77–104. doi:10.1016/0026-2862(89)90074-5
PubMed CAS Google Scholar
- Boucher Y, Baxter LT, Jain RK (1990) Interstitial pressure gradients in tissue isolated and subcutaneous tissues: implications for therapy. Cancer Res 50:4478–4484
PubMed CAS Google Scholar
- Hill RP, Perris R (2007) “Destemming” cancer stem cells. J Natl Cancer Inst 99(19):1435–1440. doi:10.1093/jnci/djm136
PubMed CAS Google Scholar
- Craig T, Jordan MLG, Noble M (2006) Cancer stem cells. N Engl J Med 355(12):1253–1261. doi:10.1056/NEJMra061808
Google Scholar
- Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66(19):9339–9344
PubMed CAS Google Scholar
- Barnhart BC, Simon MC (2007) Metastasis and stem cell pathways. Cancer Metastasis Rev 26(2):261–271. doi:10.1007/s10555-007-9053-3
PubMed CAS Google Scholar
- Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129(3):465–472. doi:10.1016/j.cell.2007.04.019
PubMed CAS Google Scholar
- Giatromanolaki A, Koukourakis MI, Sivridis E et al (2001) Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer 85(6):881–890. doi:10.1054/bjoc.2001.2018
PubMed CAS Google Scholar
- Schoppmann SF, Fenzl A, Schindl M et al (2006) Hypoxia inducible factor-1alpha correlates with VEGF-C expression and lymphangiogenesis in breast cancer. Breast Cancer Res Treat 99(2):135–141. doi:10.1007/s10549-006-9190-3
PubMed CAS Google Scholar
- Okada K, Osaki M, Araki K et al (2005) Expression of hypoxia-inducible factor (HIF-1alpha), VEGF-C and VEGF-D in non-invasive and invasive breast ductal carcinomas. Anticancer Res 25(4):3003–3009
PubMed CAS Google Scholar
- Ueda M, Hung YC, Terai Y et al (2005) Vascular endothelial growth factor-C expression and invasive phenotype in ovarian carcinomas. Clin Cancer Res 11(9):3225–3232. doi:10.1158/1078-0432.CCR-04-1148
PubMed CAS Google Scholar
- Le YJ, Corry PM (1999) Hypoxia-induced bFGF gene expression is mediated through the JNK signal transduction pathway. Mol Cell Biochem 202(1–2):1–8. doi:10.1023/A:1007059806016
PubMed CAS Google Scholar
- Giatromanolaki A, Koukourakis MI, Stathopoulos GP et al (2000) Angiogenic interactions of vascular endothelial growth factor, of thymidine phosphorylase, and of p53 protein expression in locally advanced gastric cancer. Oncol Res 12(1):33–41
PubMed CAS Google Scholar
- Bos R, van Diest PJ, de Jong JS et al (2005) Hypoxia-inducible factor-1alpha is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in invasive breast cancer. Histopathology 46(1):31–36. doi:10.1111/j.1365-2559.2005.02045.x
PubMed CAS Google Scholar
- Marjon PL, Bobrovnikova-Marjon EV, Abcouwer SF (2004) Expression of the pro-angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 by human breast carcinomas is responsive to nutrient deprivation and endoplasmic reticulum stress. Mol Cancer 3(1):4. doi:10.1186/1476-4598-3-4
PubMed Google Scholar
- Bobrovnikova-Marjon EV, Marjon PL, Barbash O et al (2004) Expression of angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 is highly responsive to ambient glutamine availability: role of nuclear factor-kappaB and activating protein-1. Cancer Res 64(14):4858–4869. doi:10.1158/0008-5472.CAN-04-0682
PubMed CAS Google Scholar
- Rofstad EK, Mathiesen B, Henriksen K et al (2005) The tumor bed effect: increased metastatic dissemination from hypoxia-induced up-regulation of metastasis-promoting gene products. Cancer Res 65(6):2387–2396. doi:10.1158/0008-5472.CAN-04-3039
PubMed CAS Google Scholar
- Kassim SK, El-Salahy EM, Fayed ST et al (2004) Vascular endothelial growth factor and interleukin-8 are associated with poor prognosis in epithelial ovarian cancer patients. Clin Biochem 37(5):363–369. doi:10.1016/j.clinbiochem.2004.01.014
PubMed CAS Google Scholar
- Griffiths L, Dachs GU, Bicknell R et al (1997) The influence of oxygen tension and pH on the expression of platelet-derived endothelial cell growth factor/thymidine phosphorylase in human breast tumor cells grown in vitro and in vivo. Cancer Res 57(4):570–572
PubMed CAS Google Scholar
- Maity A, Solomon D (2000) Both increased stability and transcription contribute to the induction of the urokinase plasminogen activator receptor (uPAR) message by hypoxia. Exp Cell Res 255(2):250–257. doi:10.1006/excr.1999.4804
PubMed CAS Google Scholar
- Memarzadeh S, Kozak KR, Chang L et al (2002) Urokinase plasminogen activator receptor: Prognostic biomarker for endometrial cancer. Proc Natl Acad Sci USA 99(16):10647–10652. doi:10.1073/pnas.152127499
PubMed Google Scholar
- Yoon SY, Lee YJ, Seo JH et al (2006) uPAR expression under hypoxic conditions depends on iNOS modulated ERK phosphorylation in the MDA-MB-231 breast carcinoma cell line. Cell Res 16(1):75–81. doi:10.1038/sj.cr.7310010
PubMed CAS Google Scholar
- Munoz-Najar UM, Neurath KM, Vumbaca F et al (2006) Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation. Oncogene 25(16):2379–2392. doi:10.1038/sj.onc.1209273
PubMed CAS Google Scholar
- Lukacova S, Khalil AA, Overgaard J et al (2005) Relationship between radiobiological hypoxia in a C3H mouse mammary carcinoma and osteopontin levels in mouse serum. Int J Radiat Biol 81(12):937–944. doi:10.1080/09553000600567616
PubMed CAS Google Scholar
- Said HM, Katzer A, Flentje M et al (2005) Response of the plasma hypoxia marker osteopontin to in vitro hypoxia in human tumor cells. Radiother Oncol 76(2):200–205. doi:10.1016/j.radonc.2005.06.023
PubMed CAS Google Scholar
- Smith MC, Luker KE, Garbow JR et al (2004) CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 64(23):8604–8612. doi:10.1158/0008-5472.CAN-04-1844
PubMed CAS Google Scholar
- Shim H, Lau SK, Devi S et al (2006) Lower expression of CXCR4 in lymph node metastases than in primary breast cancers: potential regulation by ligand-dependent degradation and HIF-1alpha. Biochem Biophys Res Commun 346(1):252–258. doi:10.1016/j.bbrc.2006.05.110
PubMed CAS Google Scholar
- Staller P, Sulitkova J, Lisztwan J et al (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425(6955):307–311. doi:10.1038/nature01874
PubMed CAS Google Scholar
- Baykal C, Ayhan A, Al A et al (2003) Overexpression of the c-Met/HGF receptor and its prognostic significance in uterine cervix carcinomas. Gynecol Oncol 88(2):123–129. doi:10.1016/S0090-8258(02)00073-2
PubMed CAS Google Scholar
- Ayhan A, Ertunc D, Tok EC et al (2005) Expression of the c-Met in advanced epithelial ovarian cancer and its prognostic significance. Int J Gynecol Cancer 15(4):618–623. doi:10.1111/j.1525-1438.2005.00117.x
PubMed CAS Google Scholar
- Ide T, Kitajima Y, Miyoshi A et al (2006) Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway. Int J Cancer 119(12):2750–2759. doi:10.1002/ijc.22178
PubMed CAS Google Scholar
- Nie D, Krishnamoorthy S, Jin R et al (2006) Mechanisms regulating tumor angiogenesis by 12-lipoxygenase in prostate cancer cells. J Biol Chem 281(27):18601–18609. doi:10.1074/jbc.M601887200
PubMed CAS Google Scholar
- Postovit LM, Abbott DE, Payne SL et al (2008) Hypoxia/reoxygenation: a dynamic regulator of lysyl oxidase-facilitated breast cancer migration. J Cell Biochem 103(5):1369–1378
PubMed CAS Google Scholar
- Zhang L, Hill RP (2004) Hypoxia enhances metastatic efficiency by up regulating mdm2 in KHT cells and increasing resistance to apoptosis. Cancer Res 64(12):4180–4189
Google Scholar
- Bardos JI, Chau NM, Ashcroft M (2004) Growth factor-mediated induction of HDM2 positively regulates hypoxia-inducible factor 1alpha expression. Mol Cell Biol 24(7):2905–2914. doi:10.1128/MCB.24.7.2905-2914.2004
PubMed CAS Google Scholar
- Storci G, Sansone P, Trere D et al (2008) The basal-like breast carcinoma phenotype is regulated by SLUG gene expression. J Pathol 214(1):25–37. doi:10.1002/path.2254
PubMed CAS Google Scholar
- Tsutsumi S, Yanagawa T, Shimura T et al (2004) Autocrine motility factor signaling enhances pancreatic cancer metastasis. Clin Cancer Res 10(22):7775–7784. doi:10.1158/1078-0432.CCR-04-1015
PubMed CAS Google Scholar
- Yoon DY, Buchler P, Saarikoski ST et al (2001) Identification of genes differentially induced by hypoxia in pancreatic cancer cells. Biochem Biophys Res Commun 288(4):882–886. doi:10.1006/bbrc.2001.5867
PubMed CAS Google Scholar
- Niizeki H, Kobayashi M, Horiuchi I et al (2002) Hypoxia enhances the expression of autocrine motility factor and the motility of human pancreatic cancer cells. Br J Cancer 86(12):1914–1919. doi:10.1038/sj.bjc.6600331
PubMed CAS Google Scholar
- Funasaka T, Yanagawa T, Hogan V et al (2005) Regulation of phosphoglucose isomerase/autocrine motility factor expression by hypoxia. FASEB J 19(11):1422–1430. doi:10.1096/fj.05-3699com
PubMed CAS Google Scholar