The PLATO 2.0 mission (original) (raw)

Abstract

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

HAYDN

Article Open access 26 March 2021

References

  1. Aerts, C., et al.: Science 300 (5627), 1926–1928 (2003)
    ADS Google Scholar
  2. Aerts, C., et al.: Asteroseismology, Astronomy and Astrophysics Library. Springer Science + Business Media B.V (2010)
  3. Agol, E.: ApJ 731, 31 (2011)
    ADS Google Scholar
  4. Alibert, Y., et al.: A&A 417, 25 (2004)
    ADS Google Scholar
  5. Alibert, Y., et al.: A&A 434, 343 (2005)
    ADS Google Scholar
  6. Almenara, J.M., et al.: A&A 506, 337 (2009)
    ADS Google Scholar
  7. Alonso, R., et al.: A&A 506, 353–358 (2009a)
    ADS Google Scholar
  8. Alonso, R., et al.: A&A 501, L23–L26 (2009b)
    ADS Google Scholar
  9. Ammons, S.M., et al.: ApJ 638, 1004–1017 (2006)
    ADS Google Scholar
  10. Appourchaux, T., et al.: A&A 543, A54 (2012)
    ADS Google Scholar
  11. Auvergne, M., et al.: A&A 506, 411 (2009)
    ADS Google Scholar
  12. Baglin, A., et al.: In: 36th COSPAR Scientific Assembly, vol. 36, p. 3749 (2006)
  13. Ballard, S., et al.: ApJ 743, 200 (2011)
    ADS Google Scholar
  14. Ballot, J., et al.: A&A 423, 1051–1061 (2004)
    ADS Google Scholar
  15. Ballot, J., et al.: A&A 530, A97 (2011)
    ADS Google Scholar
  16. Barclay, T., et al.: Nature 494, 452–454 (2013)
    ADS Google Scholar
  17. Barge, P., et al.: A&A 482, L17–L20 (2008)
    ADS Google Scholar
  18. Barnes, J.W., Fortney, J.J.: ApJ 616, 1193 (2004)
    ADS Google Scholar
  19. Barnes, S.A.: ApJ 669, 1167–1189 (2007)
    ADS Google Scholar
  20. Barnes, J.W., et al.: ApJS 197, 10 (2011)
    ADS Google Scholar
  21. Basu, R., et al.: ApJ 728 (id 157), 10 (2011)
    Google Scholar
  22. Batalha, N.M., et al.: ApJL 713, L103 (2010)
    ADS Google Scholar
  23. Batalha, N.M., et al.: ApJ 729, 27 (2011)
    ADS Google Scholar
  24. Batalha, N.M., et al.: ApJS 204, 24 (2013)
    ADS Google Scholar
  25. Batygin, K., et al.: ApJ 738, 1–11 (2011)
    ADS Google Scholar
  26. Bean, J.L., et al.: Nature 468, 669–672 (2010)
    ADS Google Scholar
  27. Beck, P.G., et al.: Science 332, 205 (2011)
    ADS Google Scholar
  28. Beck, P.G., et al.: Nature 481, 55–57 (2012)
    ADS Google Scholar
  29. Bedding, T.R., et al.: ApJ 713, L176–L181 (2010)
    ADS Google Scholar
  30. Bedding, T.R., et al.: Nature 471, 608–611 (2011)
    ADS Google Scholar
  31. Ben-Jaffel, L.: ApJ 671, L61–L64 (2007)
    ADS Google Scholar
  32. Ben-Jaffel, L., Sona Hosseini, S.: ApJ 709, 1284 (2010)
    ADS Google Scholar
  33. Benneke, B., Seager, S.: ApJ 753, 100 (2012)
    ADS Google Scholar
  34. Bergemann, M., et al.: MNRAS 427, 27–49 (2012)
    ADS Google Scholar
  35. Berta, Z.K., et al.: ApJ 747, 35 (2012)
    ADS Google Scholar
  36. Bodenheimer, P., et al.: ApJ 592, 555–563 (2003)
    ADS Google Scholar
  37. Boley, A.C., et al.: Icarus 207, 509–516 (2010)
    ADS Google Scholar
  38. Bonfils, X., et al.: A&A 549, A109 (2013)
    ADS Google Scholar
  39. Bonomo, A.S., Lanza, A.F.: A&A 547, A37 (2012)
    ADS Google Scholar
  40. Borkovits, et al.: MNRAS 428, 1656 (2013)
    ADS Google Scholar
  41. Borucki, W.J.: Icarus 58, 121B (1984)
    ADS Google Scholar
  42. Borucki, W.J., et al.: Science 325, 709 (2009)
    ADS Google Scholar
  43. Borucki, W.J., et al.: ApJ 745, 120 (2012)
    ADS Google Scholar
  44. Borucki, W.J., et al.: Science 340, 587 (2013)
    ADS Google Scholar
  45. Boss, A.P.: Science 276, 1836 (1997)
    ADS Google Scholar
  46. Brassard, P., et al.: ApJ 563, 1013 (2001)
    ADS Google Scholar
  47. Breger, M., et al.: MNRAS 414, 1721 (2011)
    ADS Google Scholar
  48. Breger, M., et al.: ApJ 759 (id. 62), 10 (2012)
    Google Scholar
  49. Briquet, M., et al.: A&A 527 (A112), 8 (2011)
    Google Scholar
  50. Briquet, M., et al.: A&A 557 (L16), 4 (2013)
    Google Scholar
  51. Broeg, C., et al.: EPJWC 47, 3005 (2013)
    Google Scholar
  52. Brown, T.M., et al.: ApJ 427, 1013 (1994)
    ADS Google Scholar
  53. Brown, T.M.: ApJ 593, L125 (2003)
    ADS Google Scholar
  54. Budaj, J., et al.: A&A 557, A72 (2013)
    ADS Google Scholar
  55. Burke, C.J., et al.: ApJS 210, 19 (2014)
    ADS Google Scholar
  56. Cabrera, J., et al.: A&A 522 (A110), 10 (2010)
    Google Scholar
  57. Cabrera, J.: EAS Publ. Ser. 42, 109 (2010)
    Google Scholar
  58. Cabrera, J., et al.: ApJ 781, 18 (2014)
    ADS Google Scholar
  59. Catanzarite, J., Shao, M.: ApJ 738, 10 (2011)
    Google Scholar
  60. Carter, J.A., et al.: Science 337, 556 (2012)
    ADS Google Scholar
  61. Casertano, S., et al.: A&A 482, 699 (2008)
    ADS Google Scholar
  62. Casewell, S.L., et al.: ApJ 759, L34 (2012)
    ADS Google Scholar
  63. Cassan, A., et al.: Nature 481, 167–169 (2012)
    ADS Google Scholar
  64. Catala, C.: ExA 23, 329–356 (2009)
    ADS Google Scholar
  65. Catala, C., Appourchaux, T.: JPhCS 271a2084C (2011)
  66. Ceillier, T., et al.: A&A 555, A54 (2013)
    ADS Google Scholar
  67. Chambers, J.E., Cassen, P.: M&PS 37, 1523 (2002)
    ADS Google Scholar
  68. Chaplin, W.J., et al.: ApJL 732, L5 (2011)
    ADS Google Scholar
  69. Chaplin, W.J., et al.: ApJ 766, 101 (2013)
    ADS Google Scholar
  70. Charbonneau, D., et al.: Protostars and Planets V 701 (2007)
  71. Charbonneau, D., et al.: Nature 462 (7275), 891 (2009)
    ADS Google Scholar
  72. Charpinet, S., et al.: Nature 461, 501 (2009)
    ADS Google Scholar
  73. Charpinet, S., et al.: A&A 516, 6 (2010)
    ADS Google Scholar
  74. Charpinet, S., et al.: Nature 480, 496 (2011)
    ADS Google Scholar
  75. Chiappini, C., et al.: A&A 449, L27—L30 (2006)
    ADS Google Scholar
  76. Chiosi, C.: IAUS 239, 235 (2007)
    ADS Google Scholar
  77. Christensen-Dalsgaard, J.: IAUS, 123. In: Christensen-Dalsgaard, J., Frandsen, S. (eds.) p. 3 (1988)
  78. Collier-Cameron, A., et al. MNRAS 380, 1230 (2007)
    ADS Google Scholar
  79. Contadakis, M.E., et al.: In: Contadakis, M.E., et al. (ed.) The Apple of Knowledge, pp. 459–474 (2010)
  80. Contadakis, M.E., et al.: AN 333, 583 (2012)
    ADS Google Scholar
  81. Cooper, C.S., Showman, A.P.: ApJL 629, L45 (2005)
    ADS Google Scholar
  82. Corsaro, E., et al.: ApJ 757 (id. 190), 13 (2012)
    Google Scholar
  83. Cowan, N.B., Agol, E.: ApJL 678, L129 (2008)
    ADS Google Scholar
  84. Cowan, N.B., Agol, E.: ApJ 726, 82 (2011)
    ADS Google Scholar
  85. Crossfield, I.J.M.: A&A 545, A97 (2012)
    ADS Google Scholar
  86. Csizmadia, Sz., et al.: A&A 417, 745–750 (2004)
    ADS Google Scholar
  87. Cunha, M.S., Metcalfe, T.S.: ApJ 666, 413 (2007)
    ADS Google Scholar
  88. Czesla, S., et al.: A&A 505, 1277–1282 (2009)
    ADS Google Scholar
  89. de Mooij, E. J. W., et al.: ApJ 771, 109 (2013)
    ADS Google Scholar
  90. Deeg, H.J., et al.: A&A 338, 479 (1998)
    ADS Google Scholar
  91. Deeg, H.J., Doyle, L.R.: EPJWC 11, id.05005 (2011)
    Google Scholar
  92. Degroote, P., et al.: Nature 464, 259–261 (2010)
    ADS Google Scholar
  93. Degroote, P., et al.: A&A 536 (id.A82), 15 (2011)
    Google Scholar
  94. Degroote, P., et al.: A&A 542 (id.A88), 25 (2012)
    Google Scholar
  95. Deheuvels, S., Michel, E.: A&A 535, A91 (2011)
    ADS Google Scholar
  96. Deheuvels, S., et al.: ApJ 756, 19 (2012)
    ADS Google Scholar
  97. De Mooij, E.J.W., et al.: A&A 538, A46 (2012)
    ADS Google Scholar
  98. Derekas, A., et al.: MNRAS 425, 1312–1319 (2012)
    ADS Google Scholar
  99. Demory, B.-O., et al.: ApJL 735, L12 (2011a)
    ADS Google Scholar
  100. Demory, B.-O., et al.: ApJS 197, 12 (2011b)
    ADS Google Scholar
  101. Demory, B.-O., et al.: ApJL 751, L28 (2012)
    ADS Google Scholar
  102. De Ridder, J., et al.: Nature 459, 398 (2009)
    ADS Google Scholar
  103. Diaz, R.F., et al.: MNRAC 441, 983 (2014)
    ADS Google Scholar
  104. Dodson-Robinson, S.E., Bodenheimer, P.: Icarus 207, 491–498 (2010)
    ADS Google Scholar
  105. Dong, S., Zhu, Z.: ApJ 778, 53 (2013)
    ADS Google Scholar
  106. Doyle, L.R., et al.: Science 333, 1602 (2011)
    ADS MathSciNet Google Scholar
  107. Dvorak, R., et al.: A&A 226, 335 (1989)
    ADS Google Scholar
  108. Dziembowski, W.A., Pamyatnykh, A.A.: MRNAS 385, 2061–2068 (2008)
    Google Scholar
  109. Dzigan, Y., Zucker, S.: ApJL 753, L1 (2012)
    ADS Google Scholar
  110. Eggenberger, P., et al.: A&A 519, A116 (2010)
    ADS Google Scholar
  111. Eggenberger, P., et al.: A&A 544, L4 (2012)
    ADS Google Scholar
  112. Eggleton, P.P.: JASS 29, 145–149 (2012)
    ADS Google Scholar
  113. Ehrenreich, D., et al.: A&A 547, A18 (2012)
    ADS Google Scholar
  114. Ekenbäck, A., et al.: ApJ 709, 670–67 (2010)
    ADS Google Scholar
  115. Elkins-Tanton, L., Seager, S.: ApJ 685, 1237 (2008)
    ADS Google Scholar
  116. Erkaev, N.V., et al.: Astrobiology 13 (11), 1011–1029 (2013)
    ADS Google Scholar
  117. ESA/SRE(2011)13: PLATO Definition Study Report during M1/M2 candidate application (2011)
  118. ESA/SRE(2009)4: PLATO Assessment Study Report (Yellow Book) (2009)
  119. Escobar, et al.: A&A 543, A96 (2012)
    ADS Google Scholar
  120. Fabrycky, D.C., et al.: ApJ 750, A114 (2012)
    ADS Google Scholar
  121. Faedi, F., et al.: MNRAS 410, 899 (2011)
    ADS Google Scholar
  122. Faigler, S., et al.: ApJ 746, 185 (2012)
    ADS Google Scholar
  123. Faigler, S., et al.: ApJ 771, 26 (2013)
    ADS Google Scholar
  124. Figueira, P., et al.: A&A 493, 671 (2009)
    ADS Google Scholar
  125. Fontaine, G., et al.: PASP 113, 409 (2001)
    ADS Google Scholar
  126. Fontaine, G., Brassard, P.: PASP 120, 1043 (2008)
    ADS Google Scholar
  127. Fontaine, G., et al.: A&A 539, 12 (2012)
    ADS Google Scholar
  128. Ford, E.B., et al.: ApJ 750, 113–131 (2012)
    ADS Google Scholar
  129. Ford, E.B., Holman, M.J.: ApJL 664, 51 (2007)
    ADS Google Scholar
  130. Fortier, A., et al.: A&A 473, 311–322 (2007)
    ADS Google Scholar
  131. Fortier, A., et al.: A&A 549, 44 (2013)
    ADS Google Scholar
  132. Fortney, J.J., et al.: ApJ 659, 1661–1672 (2007)
    ADS Google Scholar
  133. Fortney, J.J., Nettelmann, N.: SSRv 152, 423 (2010)
    ADS Google Scholar
  134. Fossati, L., et al.: ApJ 714, L222–L227 (2010)
    ADS Google Scholar
  135. Fressin, F., et al.: ApJ 745, 81 (2012a)
    ADS Google Scholar
  136. Fressin, F., et al.: Nature 482, 195–198 (2012b)
    ADS Google Scholar
  137. Fressin, F., et al.: ApJ 766, 81 (2013)
    ADS Google Scholar
  138. Gaidos, E.: 770, 12 (2013)
  139. García Hernández, A., et al.: A&A 506, 79–83 (2009)
    ADS Google Scholar
  140. Garcia Hernández, A., et al.: Science 329, 1032 (2010)
    ADS Google Scholar
  141. García Hernández, A., et al.: A&A 559, A63 (2013)
    ADS Google Scholar
  142. Giammichele, N., et al.: ASPC 469, 49 (2013)
    ADS Google Scholar
  143. Gillet, D.: A&A 544, A46 (2013)
    ADS Google Scholar
  144. Gilliland, R.L., et al.: ApJ 766, 40 (2013)
    ADS Google Scholar
  145. Gillon, M., et al.: A&A 506, 359–367 (2009)
    ADS Google Scholar
  146. Gillon, M., et al.: A&A 520, A97–A105 (2010)
    ADS Google Scholar
  147. Girardi, L., et al.: A&A 436, 895–915 (2005)
    ADS Google Scholar
  148. Gizon, L., Solanki, S.: ApJ 589, 1009–1019 (2003)
    ADS Google Scholar
  149. Gizon, L., et al.: PNAS 213 (110), 13267 (2013)
    ADS Google Scholar
  150. Goldreich, P., Soter, S.: Icarus 5, 375 (1966)
    ADS Google Scholar
  151. Gómez de Castro, A.I., et al.: Ap&SS 335, 283 (2011)
    ADS Google Scholar
  152. Goossens, M., et al.: ApJ 760, 98 (2012)
    ADS Google Scholar
  153. Grasset, O., et al.: ApJ 693, 722–733 (2009)
    ADS Google Scholar
  154. Griest, K., et al.: ApJ 786, 158 (2014)
    ADS Google Scholar
  155. Guilera, O.M., et al.: A&A 532, 142 (2011)
    ADS Google Scholar
  156. Guillot, T., et al.: ApJL 459, L35–L38 (1996)
    ADS Google Scholar
  157. Guillot, T., et al.: A&A 453, L21–L24 (2006)
    ADS Google Scholar
  158. Guillot, T., Havel, M.: A&A 527, A20–A35 (2011)
    ADS Google Scholar
  159. Hadden, S., Lithwick, Y.: ApJ 787, 80 (2014)
    ADS Google Scholar
  160. Haswell, C., et al.: ApJ 760, 79 (2012)
    ADS Google Scholar
  161. Hatzes, A., et al.: ApJ 743, 75 (2011)
    ADS Google Scholar
  162. Heber, U.: ARA&A 47, 211 (2009)
    ADS Google Scholar
  163. Hekker, S., et al.: MNRAS 414, 2594–2601 (2011)
    ADS Google Scholar
  164. Hekker, S., et al.: Astron. Nachr. 333, 1022 (2012)
    ADS Google Scholar
  165. Helled, R., Schubert, G.: Icarus 198, 156–162 (2008)
    ADS Google Scholar
  166. Helled, R., et al.: ApJ 726, 15–22 (2011)
    ADS Google Scholar
  167. Helled, R., Bodenheimer, P.: Icarus 211, 939 (2011)
    ADS Google Scholar
  168. Helled, R., Guillot, T.: ApJ 767, 113 (2013)
    ADS Google Scholar
  169. Heller, R., Barnes, R: IAU Symposium 293, 159 (2014)
  170. Heng, K., et al.: MNRAS 413, 2380–2402 (2011)
    ADS Google Scholar
  171. Hogan, E., et al.: MNRAS 396, 2074 (2009)
    ADS Google Scholar
  172. Holmström, M., et al.: Nature 451, 970–972 (2008)
    ADS Google Scholar
  173. Hori, Y., Ikoma, M.: MNRAS 416, 1419–1429 (2011)
    ADS Google Scholar
  174. Houdek, G., Gough, D.O.: MNRS 375, 861–880 (2007)
    ADS Google Scholar
  175. Howard, A.W., et al.: ApJS 201, 15 (2012)
    ADS Google Scholar
  176. Huber, D., et al.: ApJ 760, 32 (2012)
    ADS Google Scholar
  177. Huber, D., et al.: ApJ 767, 127 (2013a)
    ADS Google Scholar
  178. Huber, D., et al.: Science 342, 331–334 (2013b)
    ADS Google Scholar
  179. Hubickyj, O., et al.: Icarus 179, 415–431 (2005)
    ADS Google Scholar
  180. Ida, S., Lin, D.N.C.: ApJ 604, 388–413 (2004)
    ADS Google Scholar
  181. Ikoma, M., et al.: ApJ 537, 1013–1025 (2000)
    ADS Google Scholar
  182. Johnson, J.A., et al.: PASP 122, 701 (2010a)
    ADS Google Scholar
  183. Johnson, J.A., et al.: ApJl 721, L153 (2010b)
    ADS Google Scholar
  184. Jura, M.: AJ 130, 1261 (2005)
    ADS Google Scholar
  185. Kasting, J.F., et al.: Icarus 101, 108–128 (1993)
    ADS Google Scholar
  186. Kennedy, G.M., Kenyon, S.J.: ApJ 673, 502 (2008)
    ADS Google Scholar
  187. Kipping, D.M.: MNRAS 392, 181–189 (2009a)
    ADS Google Scholar
  188. Kipping, D.M.: MNRAS 396, 1797–1804 (2009b)
    ADS Google Scholar
  189. Kipping, D.M., et al.: MNRAS 400, 398–405 (2009c)
    ADS Google Scholar
  190. Kipping, D.M., et al.: ApJ 750, 115 (2012)
    ADS Google Scholar
  191. Kipping, D.M., et al.: MNRAS 434, 1883 (2013)
    ADS Google Scholar
  192. Kislyakova, K.G., et al.: Astrobiology 13 (11), 1030–1048 (2013)
    ADS Google Scholar
  193. Kjeldsen, H., Bedding, T.R.: A&A 293, 87 (1995)
    ADS Google Scholar
  194. Kjeldsen, H., et al.: ApJ 683, L175–L178 (2008)
    ADS Google Scholar
  195. Knutson, H.A., et al.: Nature 447, 183–186 (2007)
    ADS Google Scholar
  196. Knutson, H.A., et al.: ApJ 690, 822–836 (2009)
    ADS Google Scholar
  197. Knutson, H.A., et al.: ApJ 735, 27 (2011)
    ADS Google Scholar
  198. Kreidberg, L., et al.: Nature 505, 69 (2014)
    ADS Google Scholar
  199. Koch, D.G., et al.: ApJL 713, L79–L86 (2010)
    ADS Google Scholar
  200. Kolenberg, K., et al.: MNRAS 411, 878–890 (2011)
    ADS Google Scholar
  201. Kollath, Z., et al.: MNRAS 414, 1111–1118 (2011)
    ADS Google Scholar
  202. Koskinen, T.T., et al.: Nature 450, 845 (2007)
    ADS Google Scholar
  203. Koskinen, T.T., et al.: Icarus 226, 1678 (2013)
    ADS Google Scholar
  204. Kosovichev, A.G.: AN 323, 186–191 (2002)
    ADS Google Scholar
  205. Kovacs, G., et al.: ApJ 724, 866–877 (2010)
    ADS Google Scholar
  206. Kunder, A., et al.: AJ 141, 15 (2011)
    ADS Google Scholar
  207. Lammer, H., et al.: Ap&SS 335, 9–23 (2011a)
    ADS Google Scholar
  208. Lammer, H., et al.: Ap&SS 335, 39–50 (2011b)
    ADS Google Scholar
  209. Lammer, H., et al.: EP&S 64, 179–199 (2012)
    ADS Google Scholar
  210. Laughlin, G., et al.: ApJ 729, 7 (2011)
    ADS Google Scholar
  211. Le Borgne, J.F., et al.: AJ 144, 39–53 (2012)
    ADS Google Scholar
  212. Lebreton, Y., Goupil, M.: A&A 544, 13 (2012)
    ADS Google Scholar
  213. Lecavelier des Etangs, A., et al.: A&ASS 140, 15 (1999)
    ADS Google Scholar
  214. Lecavelier des Etangs, A., et al.: A&A 543, 4 (2012)
    ADS Google Scholar
  215. Leconte, J., Charbier, T.: A&A 540, A20 (2012)
    ADS Google Scholar
  216. Leconte, J., Charbier, T.: Nat. Geosci. 6, 347 (2013)
    ADS Google Scholar
  217. Lefever, K., et al.: A&A 463, 1093–1109 (2007)
    ADS Google Scholar
  218. Leger, A., et al.: A&A 506, 287–302 (2009)
    ADS Google Scholar
  219. Liebert, J., et al.: ApJ 769, 7 (2013)
    ADS Google Scholar
  220. Linsky, J.L., et al.: ApJ 717, 1291–1299 (2010)
    ADS Google Scholar
  221. Lissauer, J.J., et al.: Nature 470, 53–58 (2011)
    ADS Google Scholar
  222. Llama, J., et al.: MNRAS 416, L41–L44 (2011)
    ADS Google Scholar
  223. Loeb, A., Maoz, D.: MNRAS 432, 11 (2013)
    ADS Google Scholar
  224. Lopez, E.D., et al.: ApJ 761, 59 (2012)
    ADS Google Scholar
  225. Madhusudhan, N., Seager, S.: ApJ 707, 24–39 (2009)
    ADS Google Scholar
  226. Mazumdar, A., et al.: ApJ 782, 17 (2014)
    ADS Google Scholar
  227. Maeder, A.: Physics, Formation and Evolution of Rotating Stars. Springer Eds (2009)
  228. Maeder, A: A&A 26, 215 (1973)
    ADS Google Scholar
  229. Magic, Z., et al.: A&A 557, A26 (2013)
    ADS Google Scholar
  230. Mamajek, E.E., Hillenbrand, L.A.: ApJ 687, 1264 (2008)
    ADS Google Scholar
  231. Mantegazza, L., et al.: A&A 542 (id.A24), 13 (2012)
    Google Scholar
  232. Marcos-Arenal, P. , et al.: arXiv: http://arxiv.org/abs/1004.0738 (2014)
  233. Mardling, R.A.: MNRAS 407, 1048–1069 (2010)
    ADS Google Scholar
  234. Marley, M.S., et al.: JGR 100, 23349–23354 (1995)
    ADS Google Scholar
  235. Marques, J.P., et al.: A&A 549, A74 (2013)
    ADS Google Scholar
  236. Mathur, S., et al.: ApJ 749, 152 (2012)
    ADS Google Scholar
  237. Mathur, S., et al.: A&A 550 (id.A32), 7 (2013)
    Google Scholar
  238. Matijevič, G., et al.: AJ 143, 123 (2012)
    ADS Google Scholar
  239. Mayer, L., et al.: MNRAS 363, 641–648 (2005)
    ADS Google Scholar
  240. Mayor, M., et al.: arXiv: http://arxiv.org/abs/1109.2497M (2011)
  241. Mazeh, T., Faigler, S.: A&A 521, L59 (2010)
    ADS Google Scholar
  242. Mazeh, T., et al.: A&A 541, A56 (2012)
    ADS Google Scholar
  243. Mazeh, T., et al.: ApJS 208, 16 (2013)
    ADS Google Scholar
  244. McLaughlin, D.B.: ApJ 60, 22–31 (1924)
    ADS Google Scholar
  245. Metcalfe, T.S., et al.: ApJ 699, 373–382 (2009)
    ADS Google Scholar
  246. Metcalfe, T.S., et al.: ApJ 723, 1583–1598 (2010)
    ADS Google Scholar
  247. Metcalfe, T.S., et al.: ApJ 748, 10 (2012)
    ADS Google Scholar
  248. Miglio, A., Montalbán, J.: A&A 441, 615–629 (2005)
    ADS Google Scholar
  249. Miglio, A., et al.: A&A 520, L6 (2010)
    ADS Google Scholar
  250. Miglio, A.: In: Miglio, A., Montalban, J., Noels, A. (eds.) Red Giants as Probes of the Structure and Evolution of the Milky Way. Springer, Berlin (2012)
  251. Miglio, A., et al.: EPJWC 19, 5012 (2012)
    Google Scholar
  252. Miglio, A., et al.: MNRAS 429, 423–428 (2013)
    ADS Google Scholar
  253. Militzer, B., et al.: ApJL 688, L45–L48 (2008)
    ADS Google Scholar
  254. Miller, N., Fortney, J.J.: ApJL 736, L29–L34 (2011)
    ADS Google Scholar
  255. Molnár, L., et al.: ApJ 757, 13 (2012)
    ADS Google Scholar
  256. Moravveji, E., et al.: ApJ 749, 74 (2012a)
    ADS Google Scholar
  257. Moravveji, E., et al.: ApJ 747 (108), 7 (2012b)
    Google Scholar
  258. Mortier, A. , et al. : A&A 551, 5 (2013)
    Google Scholar
  259. Montalban, J., et al.: ApJ 766, 118 (2013)
    ADS Google Scholar
  260. Mordasini, C., et al.: A&A 501, 1161–184 (2009)
    ADS Google Scholar
  261. Mordasini, C., et al.: A&A 541, A97 (2012a)
    ADS Google Scholar
  262. Mordasini, C., et al.: A&A 547 (id.A111), 23 (2012b)
    Google Scholar
  263. Mosser, B., Appourchaux, T.: A&A 532, A86 (2010)
    Google Scholar
  264. Mosser, B., et al.: A&A 532, A86 (2011)
    ADS Google Scholar
  265. Mosser, B., et al.: A&A 540, A143 (2012)
    ADS Google Scholar
  266. Moutou, C., et al.: Icarus 226, 1625 (2013)
    ADS Google Scholar
  267. Muirhead, P.S., et al.: ApJ 747, 144 (2012)
    ADS Google Scholar
  268. Muirhead, P.S., et al.: ApJ 767, 111 (2013)
    ADS Google Scholar
  269. Namouni, F.: ApJL 719, 145 (2010)
    ADS Google Scholar
  270. Narita, N., et al. : PASJ 65, 27 (2013)
    ADS Google Scholar
  271. Nettelmann, N., et al.: ApJ 683, 1217–1228 (2008)
    ADS Google Scholar
  272. Nesvorný, D., et al.: ApJ 777, 3 (2013)
    ADS Google Scholar
  273. Nielsen, M.B., et al.: A&A 557, L10 (2013)
    ADS Google Scholar
  274. Noack, L., et al.: P&SS, in press (2014)
  275. Nordhaus, J., Spiegel, D.S.: MNRAS 432, 500 (2013)
    ADS Google Scholar
  276. Ofir, A., Dreizler, S.: A&A 555, A58 (2013)
    ADS Google Scholar
  277. Ogilvie, G.I.: MNRAS 429, 613 (2013)
    ADS Google Scholar
  278. Ohta, Y., et al.: ApJ 690, 1–12 (2009)
    ADS Google Scholar
  279. Oshagh, M., et al.: A&A 556, A19 (2013)
    ADS Google Scholar
  280. Østensen, R.H., et al.: MNRAS 409, 1470 (2010)
    ADS Google Scholar
  281. Pápics, P.I., et al.: A&A 528 (id.A123), 11 (2011)
    Google Scholar
  282. Pápics, P.I., et al.: A&A 542 (id.A55), 13 (2012)
    Google Scholar
  283. Pápics, P.I., et al. : A&A 553, A127 (2013)
    ADS Google Scholar
  284. Parker, E.N.: Solar Phys. 176, 219 (1979)
    ADS Google Scholar
  285. Pasquini, L., et al. A&A 473, 979 (2007)
    ADS Google Scholar
  286. Perryman, M., et al.: A&A 369, 339 (2001)
    ADS Google Scholar
  287. Petigura, E., et al.: PNAS 110, 19273 (2013)
    ADS Google Scholar
  288. Pierens, A., Nelson, R.P.: A&A 472, 993 (2007)
    ADS MATH Google Scholar
  289. Podolak, M., et al.: P&SS 43, 1517–1522 (1995)
    ADS Google Scholar
  290. Pont, F., et al.: MNRAS 432, 2917–2944 (2013)
    ADS Google Scholar
  291. Poretti, E., et al.: A&A 506, 85–93 (2009)
    ADS Google Scholar
  292. Poretti, E., et al.: A&A 520, A108 (2010)
    ADS Google Scholar
  293. Poretti, E., et al.: A&A 528, A147 (2011)
    ADS Google Scholar
  294. Prša, A., et al.: AJ 141, 83 (2011)
    ADS Google Scholar
  295. Quirion, P.-O., et al.: ApJ 725, 2176–2189 (2010)
    ADS Google Scholar
  296. Rafert, J.B., Twigg, L.W.: MNRAS 193, 7 (1980)
    Google Scholar
  297. Rappaport, S., et al.:. ApJ 752, 1 (2012)
    ADS Google Scholar
  298. Rauer, H., Catala, C.: IAUS 276, 354–358 (2011)
    ADS Google Scholar
  299. Rauer, H., et al.: In: deVera (ed) Habitability of Other Planets and Satellites (2013)
  300. Reese, D.R., et al.: A&A 539, A63 (2012)
    ADS Google Scholar
  301. Rempel, M., et al.: Science 325, 171 (2009)
    ADS Google Scholar
  302. Remus, M., et al.: A&A 541, id.A165 (2012)
  303. Ricker, G., et al.: JAVSO 42, 234 (2014)
    ADS Google Scholar
  304. Robin, A.C., et al.: A&A 409, 523–540 (2003)
    ADS Google Scholar
  305. Rogers, T.M., et al.: ApJ 772, 21 (2013)
    ADS Google Scholar
  306. Rossiter, R.A.: ApJ 60, 15–21 (1924)
    ADS Google Scholar
  307. Rowe, J.F., et al. ApJ 784, 45 (2014)
    ADS Google Scholar
  308. Roxburgh, I.W., Vorontsov, S.V.: A&A 411, 215 (2003a)
    ADS Google Scholar
  309. Roxburgh, I.W., Vorontsov, S.V.: Ap&SS 284, 187 (2003b)
    ADS Google Scholar
  310. Roxburgh, I.W., Vorontsov, S.V.: MNRAS 369, 1491 (2006)
    ADS Google Scholar
  311. Roxburgh, I.W.: A&A 493, 185–191 (2009a)
    ADS Google Scholar
  312. Roxburgh, I.W.: A&A 506, 435–444 (2009b)
    ADS Google Scholar
  313. Saio, H., et al.: ApJ 650, 1111–1118 (2006)
    ADS Google Scholar
  314. Samus, N.N., et al.: Fifty years of Cosmic Era: real and virtual studies of the sky. In: Mickaelian, A.M., et al. (eds.) Conference of Young Scientists of CIS Countries, pp. 39–47 (2012)
  315. Sanchís-Ojeda, R., et al.: Nature 487, 449–453 (2012)
    ADS Google Scholar
  316. Sanchís-Ojeda, R., et al.: AN 334, 180 (2013a)
    ADS Google Scholar
  317. Sanchís-Ojeda, R., et al.: ApJ 774, 54 (2013b)
    ADS Google Scholar
  318. Santerne, A., et al.: A&A 545, A76 (2012)
    ADS Google Scholar
  319. Santerne, A., et al.: A&A 557, 139 (2013)
    ADS Google Scholar
  320. Sartoretti, P., Schneider, J.: A&AS 134, 553–560 (1999)
    ADS Google Scholar
  321. Saumon, D., Guillot, T.: ApJ 609, 1170–1180 (2004)
    ADS Google Scholar
  322. Scaringi, S., et al.: MNRAS 431, 2535–2541 (2013)
    ADS Google Scholar
  323. Schneider, J., et al.: In: Rebolo, R., Martin, E.L., Zapatero Osorio, M.R. (eds.) Conf. Ser. 134, p. 241 (1998)
  324. Schneider, J., et al.: A&A 532, 79 (2011)
    ADS Google Scholar
  325. Schneider, J., et al.: IJA. submitted (2014)
  326. Seager, S., et al.: ApJ 669, 1279–1297 (2007)
    ADS Google Scholar
  327. Shiode, J.H., et al.: MNRAS 430, 1736–1745 (2013)
  328. Showman, A.P., Guillot, T.: A&A 385, 166–180 (2002)
    ADS Google Scholar
  329. Showman, A.P., et al.: ApJ 699, 564 (2009)
    ADS Google Scholar
  330. Shporer, A., et al.: NewA 17, 309–315 (2012)
    ADS Google Scholar
  331. Shporer, A., et al.: AJ 142, 195 (2011)
    ADS Google Scholar
  332. Shustov, B., et al.: Ap&SS 320, 187–190 (2009)
    ADS Google Scholar
  333. Shustov, B., et al.: Ap&SS 335, 273–282 (2011)
    ADS Google Scholar
  334. Simon, A.E., et al.: MNRAS 419, 164–171 (2012)
    ADS Google Scholar
  335. Silva, A.V.R.: ApJL 585, 147 (2003)
    ADS Google Scholar
  336. Silva Aguirre, V., et al.: ApJ 757, 99 (2012)
    ADS Google Scholar
  337. Silva-Valio, A.: ApJ 683, 179–182 (2008)
    ADS Google Scholar
  338. Silva-Valio, A., Lanza, A.F.: A&A 529, A36 (2011)
    ADS Google Scholar
  339. Silvotti, R., et al.: Nature 449, 189 (2007)
    ADS Google Scholar
  340. Silvotti, R., et al.: AIP Conf. Proc. 1331, 336 (2011)
    ADS Google Scholar
  341. Silvotti, R., et al.: A&A, submitted (2014)
  342. Slawson, R.W., et al.: AJ 142, 160 (2011)
    ADS Google Scholar
  343. Sliski, D.H., Kipping, D.M.: arXiv: http://arxiv.org/abs/1401.1207 (2014)
  344. Snellen, I.A.G., et al.: Nature 459, 543–545 (2009)
    ADS Google Scholar
  345. Snellen, I.A.G., et al.: A&A 513, A76 (2010)
    ADS Google Scholar
  346. Sohl, F., Schubert, G.: In: Spohn, T. (ed.) Treatise on Geophysics (Editor-in-Chief G. Schubert), vol. 10, Planets and Moons, pp. 27–68. Elsevier (2007)
  347. Solanki, S.K., et al.: ARA&A 51, 311–351 (2013)
    ADS Google Scholar
  348. Sotin, C., et al.: Icarus 191, 337–351 (2007)
    ADS Google Scholar
  349. Steffen, J.H., et al.: MNRAS 428, 1077 (2012)
    ADS Google Scholar
  350. Stello, D., et al.: ApJ 700, 1589–1602 (2009)
    ADS Google Scholar
  351. Stello, D., et al.: ApJ 13 (id. 13) (2011)
  352. Straniero, O., et al.: ApJ 583, 878 (2003)
    ADS Google Scholar
  353. Strassmeier, K.G.: A&ARv 17, 251–308 (2009)
    ADS Google Scholar
  354. Suárez, J.C., et al.: A&A 449, 673–685 (2006)
    ADS Google Scholar
  355. Suárez, J.C., et al.: ApJ 690, 1401 (2009)
    ADS Google Scholar
  356. Suárez, J.C., et al.: A&A 563, A7 (2014)
    ADS Google Scholar
  357. Swift, D.C., et al.: ApJ 744, 595 (2012)
    Google Scholar
  358. Szabó, R., et al.: MNRAS 409, 1244 (2010)
    ADS Google Scholar
  359. Szabo, R., et al.: MNRAS 413, 2709 (2011)
    ADS Google Scholar
  360. Szabo, R., et al.: A&A 553, 17 (2013)
    ADS Google Scholar
  361. Thoul, A., et al.: A&A 551 (id.A12), 6 (2013)
    Google Scholar
  362. Tingley, B., et al.: ApJ 726, 112 (2011)
    ADS Google Scholar
  363. Tkachenko, A., et al.: A&A 556 (id A52), 12 (2013)
    MathSciNet Google Scholar
  364. Torres, G., et al.: ApJ 727, 24 (2011)
    ADS Google Scholar
  365. Torres, G., et al.: A&ARv 18, 67–126 (2010)
    ADS Google Scholar
  366. Tran, K., et al.: ApJ 774, 81 (2013)
    ADS Google Scholar
  367. Traub, W.A.: ApJ 745, 10 (2012)
    Google Scholar
  368. Tsiganis, K., et al.: Nature 435, 459–461 (2005)
    ADS Google Scholar
  369. Tusnski, L.R.M., Valio, A.: ApJ 743, 97 (2011)
    ADS Google Scholar
  370. Udry, S., Santos, N.C.: ARA&A 45, 397–439 (2007)
    ADS Google Scholar
  371. Uytterhoeven, K., et al.: A&A 534 (A125), 70 (2011)
    Google Scholar
  372. Valencia, D., et al.: Icarus 181, 545–554 (2006)
    ADS Google Scholar
  373. Valencia, D., et al.: ApJ 665, 1413–1420 (2007)
    ADS Google Scholar
  374. Van Eylen, V., et al.: ApJ 782, 1 (id.14), 13 (2014)
    ADS Google Scholar
  375. Van Grootel, V., et al.: A&A 553, 97 (2013)
    ADS Google Scholar
  376. Vazan, A., Helled, R.: ApJ 756, 90 (2012)
    ADS Google Scholar
  377. Vidal-Madjar, A., et al.: Nature 422, 143–146 (2003)
    ADS Google Scholar
  378. Vidal-Madjar, A., et al.: ApJ 604, 69–72 (2004)
    ADS Google Scholar
  379. Vidal-Madjar, A., et al.: A&A 527, 110 (2011)
    ADS Google Scholar
  380. Vigan, A., et al.: A&A 544, A9 (2012)
    ADS Google Scholar
  381. Wagner, F.W., et al.: Icarus 214, 366–376 (2011)
    ADS Google Scholar
  382. Wagner, F.W., et al.: A&A 541, A103–A116 (2012)
    ADS Google Scholar
  383. Wells, M., et al. AAS 221, #354.15 (2013)
    ADS Google Scholar
  384. Welsh, W.F., et al.: ApJL 713, L145–L149 (2010)
    ADS Google Scholar
  385. Welsh, W.F., et al.: Nature 481, 475–479 (2012)
    ADS Google Scholar
  386. West, M.J., et al.: ApJ 730, 122 (2011)
    ADS Google Scholar
  387. Wheatley, P., et al. EPJWC 47, id.13002 (2013)
    Google Scholar
  388. White, T.R., et al.: ApJ 743, 161 (2011)
    ADS Google Scholar
  389. Winn, J.N., et al.: ApJL 741, L1 (2011)
    ADS Google Scholar
  390. Wu, Y., Lithwick, Y. ApJ 772, 74 (2013)
    ADS Google Scholar
  391. Zahn, J.-P.: A&A 265, 115 (1992)
    ADS Google Scholar
  392. Zeng, L., Sasselov, D.: PASP 125, 227 (2013)
    ADS Google Scholar
  393. Zhao, J., et al.: ApJ 557, 384–388 (2001)
    ADS Google Scholar
  394. Zucker, S., et al.: ApJ 670, 1326–1330 (2007)
    ADS Google Scholar
  395. Zwintz, K., et al.: A&A 550, A121 (2013)
    ADS Google Scholar
  396. Diaz, R.F., et al.: MNRAC, Vol. 441 (2014)

Download references

Acknowledgments

The authors acknowledge many fruitful discussions with the ESA study team members, in particular the project scientist and the project manager (Ana Heras and Philippe Gondoin), as well as previous ESA members of the PLATO M1/M2 proposal (Osvaldo Piersanti, Anamarija Stankov). The M3 PLATO 2.0 Mission Consortium also thanks the consortium participants, in particular CNES, France, who prepared the M1/M2 PLATO proposal, which forms the basis on which PLATO 2.0’s application as M3 candidate is built on. We also thank Kayser Threde (in particular the study manager Richard Haarmann) for their inputs and fruitful cooperation in the M3 proposal preparation phase. We also thank the referees for their thorough revision and insightful comments, which have led to a significant improvement of this manuscript.

M. Ammler-von Eiff acknowledges support by DLR (Deutsches Zentrum für Luft- und Raumfahrt) under the project 50 OW 0204. M. Bergemann acknowledges the support by the European Research Council/European Community under the FP7 programme through ERC Grant number 320360. I. Boisse acknowledges the support from the Fundacao para a Ciencia e Tecnologia (Portugal) through the grant SFRH/BPD/87857/2012. For J. Christensen-Dalsgard, funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (Grant DNRF106). The research is supported by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (Grant agreement no.: 267864). L. Gizon acknowledges support from Deutsche Forschungsgemeinschaft SFB 963 “Astrophysical Flow Instabilities and Turbulence” (Project A18). M. Godolt and J.L. Grenfell have been partly supported by the Helmholtz Gemeinschaft (HGF) through the HGF research alliance “Planetary Evolution and Life”. S. Hekker acknowledges financial support from the Netherlands Organisation for Scientific Research (NOW) and the Stellar Ages project funded by the European Research Council (Grant agreement number 338251). K. G. Kislyakova, N. V. Erkaev, M. L. Khodachenko, H. Lammer, M. Güdel acknowledge support by the FWF NFN project S116 “Pathways to Habitability: From Disks to Active Stars, Planets and Life”, and subprojects, S116 604-N16 “Radiation & Wind Evolution from T Tauri Phase to ZAMS and Beyond”, S116 606-N16 “Magnetospheric Electrodynamics of Exoplanets”, S116607-N16 “Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions”. F. Kupka is grateful for support through FWF project P25229-N27. M. Mas-Hesse was supported by Spanish MINECO under grant AYA2012-39362-C02-01. L. Noack has been funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office through the Planet Topers alliance. D.R. Reese is supported through a postdoctoral fellowship from the “Subside fèdèral pour la recherche 2012”, University of Liège. I.W. Roxburgh gratefully acknowledges support from the Leverhulme Foundation under grant EM-2012-035/4. A. Santerne and N.C. Santos acknowledge the support by the European Research Council/European Community under the FP7 through Starting Grant agreement number 239953. S. G. Sousa acknowledges the support by the European Research Council/European Community under the FP7 through Starting Grant agreement number 239953. Gy.M. Szabó acknowledges the Hungarian OTKA Grants K104607, the HUMAN MB08C 81013 grant, by the City of Szombathely under agreement No. S-11-1027 and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. R. Szabó was supported by the János Bolyai Research Scholarship, Hungarian OTKA grant K83790, KTIA URKUT_10-1-2011-0019 grant Lendület-2009 Young Researchers’ Program and the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreements no. 269194 (IRSES/ASK) and no. 312844 (SPACEINN).

Author information

Authors and Affiliations

  1. Institute of Planetary Research, German Aerospace Center, Rutherfordstrasse 2, 12489, Berlin, Germany
    H. Rauer, J. Cabrera, Sz. Csizmadia, C. Dreyer, P. Eigmüller, A. Erikson, M. Fridlund, M. Godolt, J. L. Grenfell, F. Sohl & F. W. Wagner
  2. Department of Astronomy and Astrophysics, Berlin University of Technology, Hardenbergstrasse 36, 10623, Berlin, Germany
    H. Rauer & C. Dreyer
  3. LESIA, Observatoire de Paris, PSL Research University, CNRS, UPMC, University Paris-Diderot, 5 Pl Jules Janssen, 92195, Meudon Cedex, France
    C. Catala, M.-J. Goupil, K. Belkacem, Y. Lebreton, R.-M. Ouazzani & J. Schneider
  4. Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
    C. Aerts, P. Marcos-Arenal, E. Moravveji, P. Pápics, A. Tkachenko & K. Zwintz
  5. Institut d’Astrophysique Spatiale, Université Paris 11, Batiment 12191405, Orsay, Cedex, France
    T. Appourchaux & F. Baudin
  6. Center for Space and Habitability, University of Bern, Physikalisches Institut, Sidlerstrasse 5, 3012, Bern, Switzerland
    W. Benz, Y. Alibert & K. Heng
  7. Department of Astronomy, AlbaNova University Center, Stockholm University, 106 91, Stockholm, Sweden
    A. Brandeker
  8. Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000, Aarhus C, Denmark
    J. Christensen-Dalsgaard
  9. Laboratoire d’Astrophysique de Marseille, 38 rue Frédéric Joliot-Curie, 13388, Marseille Cedex 13, France
    M. Deleuil & J.-M. Almenara
  10. Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 337077, Göttingen, Germany
    L. Gizon, A. C. Birch, R. Burston, S. Hekker, N. Krivova, J. Schou, S. Schuh & H. Schunker
  11. Institute for Astronomy, University of Vienna, Türkenschanzstrasse 17, 1180, Vienna, Austria
    M. Güdel
  12. Instituto de Astronomia, Geofísica e Ciências Atmosféricas - IAG/USP, São Paulo, Brazil
    E. Janot-Pacheco
  13. Centro de Astrobiología (CSIC–INTA), Madrid, Spain
    M. Mas-Hesse
  14. INAF- Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123, Catania, Italy
    I. Pagano, A. F. Lanza & S. Messina
  15. Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Vicolo dell’Osservatorio 3, 35122, Padova, Italy
    G. Piotto, M. Damasso & V. Nascimbeni
  16. Department of Physics, Warwick University, Gibbet Hill Rd, Coventry CV4 7AL, UK
    D. Pollacco & P. J. Wheatley
  17. Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762, Porto, Portugal
    Ċ. Santos, V. Adibekyan, I. Boisse, I. M. Brandão, M. Cunha, P. Figueira, J. Gomes da Silva, J. Martins, M. Montalto, M. J. P. F. G. Monteiro, A. Mortier, M. Oshagh, B. Rojas-Ayala, A. Santerne & S. G. Sousa
  18. Mullard Space Science Laboratory, University College London, London, UK
    A. Smith
  19. Instituto de Astrofísica de Andalucía – CSIC, Glorieta de la Astronomía, s/n.18008, Granada, Spain
    J.-C. Suárez
  20. Konkoly Observatory of the Hungarian Academy of Science, Konkoly Thege Miklos út. 15-17, 1121, Budapest, Hungary
    R. Szabó & Gy. M. Szabó
  21. Observatoire de Genève, 51 chemin des Maillettes, 1290, Sauverny, Switzerland
    S. Udry, R. F. Díaz, P. Eggenberger & D. Ehrenreich
  22. Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), 14476, Potsdam, Germany
    P. Amaro-Seoane
  23. Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778, Tautenburg, Germany
    M. Ammler-von Eiff, E. Günther & A. P. Hatzes
  24. INAF-Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807, Merate, LC, Italy
    E. Antonello, F. Borsa, E. Poretti & M. Rainer
  25. Institute for Astrophysics, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
    L. Gizon, S. Dreizler, J. P. Marques, M. B. Nielsen & A. Ofir
  26. Leibniz Institute for Astrophysics, An der Sternwarte 16, 14482, Potsdam, Germany
    S. Barnes, G. Bihain, C. Chiappini, T. Granzer, K. G. Strassmeier & J. Weingrill
  27. Institute of Astronomy, University of Cambridge, CB3 OHA, Cambridge, UK
    M. Bergemann
  28. INAF - Osservatorio Aastrofisico di Torino, Via Osservatorio 20, 10025, Pino Torinese, Italy
    A. S. Bonomo, M. Damasso, R. Silvotti & A. Sozzetti
  29. INAF - Osservatorio Astronomico di Roma, Via Frascati 33, 00040, Monte Porzio Catone, RM, Italy
    E. Brocato, G. Giuffrida, P. M. Marrese & P. Ventura
  30. CEA, DSM/IRFU/Service d’Astrophysique, Bat 709, CEA-Saclay, 91191, Gif-sur-Yvette, France
    S. Brun, R. A. García & S. Mathis
  31. Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK
    M. Burleigh
  32. Royal Observatory of Belgium, Ringlaan 3, 1180, Brussels, Belgium
    L. Noack
  33. INAF - Osservatorio Astronomico di Teramo, Via Mentore Maggini s.n.c., 64100, Teramo, Italy
    S. Cassisi & G. Raimondo
  34. School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
    W. Chaplin & A. Miglio
  35. Université de Toulouse, UPS-OMP, IRAP, 14 Av. E. Belin, 31400, Toulouse, France
    S. Charpinet & S. D. Vauclair
  36. Lund Observatory, Box 43, 221 00, Lund, Sweden
    R. P. Church, M. B. Davies, S. Feltzing & A. Johansen
  37. Instituto de Astrofísica de Canarias, Tenerife, Spain
    H. J. Deeg
  38. Laboratory of Automation and Control, Polytechnic School of the University of São Paulo, São Paulo, Brazil
    F. de Oliveira Fialho
  39. Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
    R. Farmer, C. A. Haswell, U. Kolb & A. J. Norton
  40. Observatoire de Grenoble, Institut de Planetologie et d’Astrophysique de Grenoble, 38041, Grenoble Cedex 9, France
    X. Bonfils & T. Forveille
  41. ASI Science Data Center, Via del Politecnico snc, 00133, Rome, Italy
    P. Giommi, G. Giuffrida & P. M. Marrese
  42. Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT, 2611, Australia
    M. Asplund
  43. Institut d’Astrophysique et Géophysique de l’Université de Liège, Allée du 6 Août 17, 4000, Liège, Belgium
    A. Grotsch-Noels, J. Montalban, T. Morel, D. R. Reese, S. Salmon & V. Van Grootel
  44. Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, 98bis Bd Arago, 75014, Paris, France
    G. Hébrard
  45. Sterrenkundig Instituut Anton Pannekoek, Universiteit van Amsterdam, Postbus 94249, 1090 GE, Amsterdam, The Netherlands
    S. Hekker
  46. Department of Geophysics, Atmospheric and Planetary Sciences, Tel-Aviv University, Tel-Aviv, Israel
    R. Helled
  47. SETI Institute, NASA Ames Research Center, Mountain View, CA, USA
    J. M. Jenkins
  48. Austrian Academy of Sciences, Schmiedlstrasse 6, 8042, Graz, Austria
    M. L. Khodachenko, K. G. Kislyakova & H. Lammer
  49. Institut für Astronomie and Astrophysik, Universität Tübingen, Morgenstelle 10, 72076, Tübingen, Germany
    W. Kley
  50. Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090, Wien, Austria
    F. Kupka
  51. INAF - Astronomical Observatory of Padova, Padua,, Italy
    D. Magrin & R. Ragazzoni
  52. Space Science Institute, 4750 Walnut Street, Suite#205, Boulder, CO, 80301, USA
    S. Mathur
  53. Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Victoria, 3800, Australia
    H. Moradi
  54. Planet and Star Formation Department, Max Planck Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany
    C. Mordasini
  55. Instituto Mauá de Tecnologia, São Paulo, Brazil
    V. C. Parro
  56. Observatoire Midi-Pyrenées, 14 Av E Belin, 31400, Toulouse Cedex, France
    P. Petit
  57. Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS, 34095, Montpellier cedex 5, France
    B. Plez
  58. ZAH, Landessternwarte, Universität Heidelberg, Königstuhl 12, 69117, Heidelberg, Germany
    A. Quirrenbach & S. Reffert
  59. Institute of Physics, University of Rostock, 18051, Rostock, Germany
    R. Redmer
  60. Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Rd, London, E1 4NS, UK
    R. P. Nelson & I. W. Roxburgh
  61. CRAAM - Mackenzie University, Sao Paulo, Brazil
    A. Silva-Valio
  62. Isaac Newton Group of Telescopes, Astronomy Group, Apartado 321, 38700, Santa Cruz de La Palma, Spain
    I. Skillen
  63. Leiden Observatory, Leiden University, Postbus 9513, 2300 RA, Leiden, The Netherlands
    I. Snellen
  64. Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 18000, Prague 8, Czech Republic
    M. Švanda
  65. ELTE Gothard Astrophysical Observatory, Szent Imre herceg út 112, 9704, Szombathely, Hungary
    Gy. M. Szabó
  66. Atmosphere and Planetary Sciences Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
    D. Valencia
  67. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
    N. A. Walton
  68. Comparative Planetology, Centre for Earth Evolution and Dynamics, University of Oslo, PO 1048 Blindern, 0316, Oslo, Norway
    S. C. Werner
  69. Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
    D. Stello

Authors

  1. H. Rauer
    You can also search for this author inPubMed Google Scholar
  2. C. Catala
    You can also search for this author inPubMed Google Scholar
  3. C. Aerts
    You can also search for this author inPubMed Google Scholar
  4. T. Appourchaux
    You can also search for this author inPubMed Google Scholar
  5. W. Benz
    You can also search for this author inPubMed Google Scholar
  6. A. Brandeker
    You can also search for this author inPubMed Google Scholar
  7. J. Christensen-Dalsgaard
    You can also search for this author inPubMed Google Scholar
  8. M. Deleuil
    You can also search for this author inPubMed Google Scholar
  9. L. Gizon
    You can also search for this author inPubMed Google Scholar
  10. M.-J. Goupil
    You can also search for this author inPubMed Google Scholar
  11. M. Güdel
    You can also search for this author inPubMed Google Scholar
  12. E. Janot-Pacheco
    You can also search for this author inPubMed Google Scholar
  13. M. Mas-Hesse
    You can also search for this author inPubMed Google Scholar
  14. I. Pagano
    You can also search for this author inPubMed Google Scholar
  15. G. Piotto
    You can also search for this author inPubMed Google Scholar
  16. D. Pollacco
    You can also search for this author inPubMed Google Scholar
  17. Ċ. Santos
    You can also search for this author inPubMed Google Scholar
  18. A. Smith
    You can also search for this author inPubMed Google Scholar
  19. J.-C. Suárez
    You can also search for this author inPubMed Google Scholar
  20. R. Szabó
    You can also search for this author inPubMed Google Scholar
  21. S. Udry
    You can also search for this author inPubMed Google Scholar
  22. V. Adibekyan
    You can also search for this author inPubMed Google Scholar
  23. Y. Alibert
    You can also search for this author inPubMed Google Scholar
  24. J.-M. Almenara
    You can also search for this author inPubMed Google Scholar
  25. P. Amaro-Seoane
    You can also search for this author inPubMed Google Scholar
  26. M. Ammler-von Eiff
    You can also search for this author inPubMed Google Scholar
  27. M. Asplund
    You can also search for this author inPubMed Google Scholar
  28. E. Antonello
    You can also search for this author inPubMed Google Scholar
  29. S. Barnes
    You can also search for this author inPubMed Google Scholar
  30. F. Baudin
    You can also search for this author inPubMed Google Scholar
  31. K. Belkacem
    You can also search for this author inPubMed Google Scholar
  32. M. Bergemann
    You can also search for this author inPubMed Google Scholar
  33. G. Bihain
    You can also search for this author inPubMed Google Scholar
  34. A. C. Birch
    You can also search for this author inPubMed Google Scholar
  35. X. Bonfils
    You can also search for this author inPubMed Google Scholar
  36. I. Boisse
    You can also search for this author inPubMed Google Scholar
  37. A. S. Bonomo
    You can also search for this author inPubMed Google Scholar
  38. F. Borsa
    You can also search for this author inPubMed Google Scholar
  39. I. M. Brandão
    You can also search for this author inPubMed Google Scholar
  40. E. Brocato
    You can also search for this author inPubMed Google Scholar
  41. S. Brun
    You can also search for this author inPubMed Google Scholar
  42. M. Burleigh
    You can also search for this author inPubMed Google Scholar
  43. R. Burston
    You can also search for this author inPubMed Google Scholar
  44. J. Cabrera
    You can also search for this author inPubMed Google Scholar
  45. S. Cassisi
    You can also search for this author inPubMed Google Scholar
  46. W. Chaplin
    You can also search for this author inPubMed Google Scholar
  47. S. Charpinet
    You can also search for this author inPubMed Google Scholar
  48. C. Chiappini
    You can also search for this author inPubMed Google Scholar
  49. R. P. Church
    You can also search for this author inPubMed Google Scholar
  50. Sz. Csizmadia
    You can also search for this author inPubMed Google Scholar
  51. M. Cunha
    You can also search for this author inPubMed Google Scholar
  52. M. Damasso
    You can also search for this author inPubMed Google Scholar
  53. M. B. Davies
    You can also search for this author inPubMed Google Scholar
  54. H. J. Deeg
    You can also search for this author inPubMed Google Scholar
  55. R. F. Díaz
    You can also search for this author inPubMed Google Scholar
  56. S. Dreizler
    You can also search for this author inPubMed Google Scholar
  57. C. Dreyer
    You can also search for this author inPubMed Google Scholar
  58. P. Eggenberger
    You can also search for this author inPubMed Google Scholar
  59. D. Ehrenreich
    You can also search for this author inPubMed Google Scholar
  60. P. Eigmüller
    You can also search for this author inPubMed Google Scholar
  61. A. Erikson
    You can also search for this author inPubMed Google Scholar
  62. R. Farmer
    You can also search for this author inPubMed Google Scholar
  63. S. Feltzing
    You can also search for this author inPubMed Google Scholar
  64. F. de Oliveira Fialho
    You can also search for this author inPubMed Google Scholar
  65. P. Figueira
    You can also search for this author inPubMed Google Scholar
  66. T. Forveille
    You can also search for this author inPubMed Google Scholar
  67. M. Fridlund
    You can also search for this author inPubMed Google Scholar
  68. R. A. García
    You can also search for this author inPubMed Google Scholar
  69. P. Giommi
    You can also search for this author inPubMed Google Scholar
  70. G. Giuffrida
    You can also search for this author inPubMed Google Scholar
  71. M. Godolt
    You can also search for this author inPubMed Google Scholar
  72. J. Gomes da Silva
    You can also search for this author inPubMed Google Scholar
  73. T. Granzer
    You can also search for this author inPubMed Google Scholar
  74. J. L. Grenfell
    You can also search for this author inPubMed Google Scholar
  75. A. Grotsch-Noels
    You can also search for this author inPubMed Google Scholar
  76. E. Günther
    You can also search for this author inPubMed Google Scholar
  77. C. A. Haswell
    You can also search for this author inPubMed Google Scholar
  78. A. P. Hatzes
    You can also search for this author inPubMed Google Scholar
  79. G. Hébrard
    You can also search for this author inPubMed Google Scholar
  80. S. Hekker
    You can also search for this author inPubMed Google Scholar
  81. R. Helled
    You can also search for this author inPubMed Google Scholar
  82. K. Heng
    You can also search for this author inPubMed Google Scholar
  83. J. M. Jenkins
    You can also search for this author inPubMed Google Scholar
  84. A. Johansen
    You can also search for this author inPubMed Google Scholar
  85. M. L. Khodachenko
    You can also search for this author inPubMed Google Scholar
  86. K. G. Kislyakova
    You can also search for this author inPubMed Google Scholar
  87. W. Kley
    You can also search for this author inPubMed Google Scholar
  88. U. Kolb
    You can also search for this author inPubMed Google Scholar
  89. N. Krivova
    You can also search for this author inPubMed Google Scholar
  90. F. Kupka
    You can also search for this author inPubMed Google Scholar
  91. H. Lammer
    You can also search for this author inPubMed Google Scholar
  92. A. F. Lanza
    You can also search for this author inPubMed Google Scholar
  93. Y. Lebreton
    You can also search for this author inPubMed Google Scholar
  94. D. Magrin
    You can also search for this author inPubMed Google Scholar
  95. P. Marcos-Arenal
    You can also search for this author inPubMed Google Scholar
  96. P. M. Marrese
    You can also search for this author inPubMed Google Scholar
  97. J. P. Marques
    You can also search for this author inPubMed Google Scholar
  98. J. Martins
    You can also search for this author inPubMed Google Scholar
  99. S. Mathis
    You can also search for this author inPubMed Google Scholar
  100. S. Mathur
    You can also search for this author inPubMed Google Scholar
  101. S. Messina
    You can also search for this author inPubMed Google Scholar
  102. A. Miglio
    You can also search for this author inPubMed Google Scholar
  103. J. Montalban
    You can also search for this author inPubMed Google Scholar
  104. M. Montalto
    You can also search for this author inPubMed Google Scholar
  105. M. J. P. F. G. Monteiro
    You can also search for this author inPubMed Google Scholar
  106. H. Moradi
    You can also search for this author inPubMed Google Scholar
  107. E. Moravveji
    You can also search for this author inPubMed Google Scholar
  108. C. Mordasini
    You can also search for this author inPubMed Google Scholar
  109. T. Morel
    You can also search for this author inPubMed Google Scholar
  110. A. Mortier
    You can also search for this author inPubMed Google Scholar
  111. V. Nascimbeni
    You can also search for this author inPubMed Google Scholar
  112. R. P. Nelson
    You can also search for this author inPubMed Google Scholar
  113. M. B. Nielsen
    You can also search for this author inPubMed Google Scholar
  114. L. Noack
    You can also search for this author inPubMed Google Scholar
  115. A. J. Norton
    You can also search for this author inPubMed Google Scholar
  116. A. Ofir
    You can also search for this author inPubMed Google Scholar
  117. M. Oshagh
    You can also search for this author inPubMed Google Scholar
  118. R.-M. Ouazzani
    You can also search for this author inPubMed Google Scholar
  119. P. Pápics
    You can also search for this author inPubMed Google Scholar
  120. V. C. Parro
    You can also search for this author inPubMed Google Scholar
  121. P. Petit
    You can also search for this author inPubMed Google Scholar
  122. B. Plez
    You can also search for this author inPubMed Google Scholar
  123. E. Poretti
    You can also search for this author inPubMed Google Scholar
  124. A. Quirrenbach
    You can also search for this author inPubMed Google Scholar
  125. R. Ragazzoni
    You can also search for this author inPubMed Google Scholar
  126. G. Raimondo
    You can also search for this author inPubMed Google Scholar
  127. M. Rainer
    You can also search for this author inPubMed Google Scholar
  128. D. R. Reese
    You can also search for this author inPubMed Google Scholar
  129. R. Redmer
    You can also search for this author inPubMed Google Scholar
  130. S. Reffert
    You can also search for this author inPubMed Google Scholar
  131. B. Rojas-Ayala
    You can also search for this author inPubMed Google Scholar
  132. I. W. Roxburgh
    You can also search for this author inPubMed Google Scholar
  133. S. Salmon
    You can also search for this author inPubMed Google Scholar
  134. A. Santerne
    You can also search for this author inPubMed Google Scholar
  135. J. Schneider
    You can also search for this author inPubMed Google Scholar
  136. J. Schou
    You can also search for this author inPubMed Google Scholar
  137. S. Schuh
    You can also search for this author inPubMed Google Scholar
  138. H. Schunker
    You can also search for this author inPubMed Google Scholar
  139. A. Silva-Valio
    You can also search for this author inPubMed Google Scholar
  140. R. Silvotti
    You can also search for this author inPubMed Google Scholar
  141. I. Skillen
    You can also search for this author inPubMed Google Scholar
  142. I. Snellen
    You can also search for this author inPubMed Google Scholar
  143. F. Sohl
    You can also search for this author inPubMed Google Scholar
  144. S. G. Sousa
    You can also search for this author inPubMed Google Scholar
  145. A. Sozzetti
    You can also search for this author inPubMed Google Scholar
  146. D. Stello
    You can also search for this author inPubMed Google Scholar
  147. K. G. Strassmeier
    You can also search for this author inPubMed Google Scholar
  148. M. Švanda
    You can also search for this author inPubMed Google Scholar
  149. Gy. M. Szabó
    You can also search for this author inPubMed Google Scholar
  150. A. Tkachenko
    You can also search for this author inPubMed Google Scholar
  151. D. Valencia
    You can also search for this author inPubMed Google Scholar
  152. V. Van Grootel
    You can also search for this author inPubMed Google Scholar
  153. S. D. Vauclair
    You can also search for this author inPubMed Google Scholar
  154. P. Ventura
    You can also search for this author inPubMed Google Scholar
  155. F. W. Wagner
    You can also search for this author inPubMed Google Scholar
  156. N. A. Walton
    You can also search for this author inPubMed Google Scholar
  157. J. Weingrill
    You can also search for this author inPubMed Google Scholar
  158. S. C. Werner
    You can also search for this author inPubMed Google Scholar
  159. P. J. Wheatley
    You can also search for this author inPubMed Google Scholar
  160. K. Zwintz
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toH. Rauer.

Appendix A

Appendix A

Methods: characterizing planets and their host stars

Since the PLATO 2.0 mission addresses science goals in very different scientific communities, we briefly describe the key aspects of the methods used.

1.1 A1 Planetary transits, a method to detect planets and determine their parameters

The transit method photometrically measures the flux of target stars over time, searching for a dimming of stellar flux by an orbiting planet passing through the line-of-sight to Earth. When the planet is in front of the star, it shades an area on the stellar surface proportional to its size. The dimming of stellar flux is therefore proportional to the square of the radius of the planet, Rplanet, relative to the radius of the star, RStar:ΔF α(Rplanet/RStar)2. Figure 17 shows as an example the transit light curve of Kepler-10b, the smallest known exoplanet with radius and mass measurement so far (Rplanet=1.416+/−0.03 REarth, Mplanet=4.6+/−1.2 MEarth, [24]). The round shape during transit is caused by the limb darkening of the host star. The transit method allows us to directly measure a planet’s size once the size of the star is known.

Fig. 17

figure 17

Transit light curve of Kepler-10b [23]. The planet has an orbital period of about 0.8 days and was observed by Kepler for a period over 8 months for this data set. The V magnitude of the host star is 10.96 mag

Full size image

The mass of a detected transiting planet then has to be determined by other means, for example by spectroscopic radial-velocity follow-up. Once radius and true mass of the detected object are known, its bulk parameters are well determined and the object can be clearly separated from possible false-alarm events also causing periodic dimming of stellar intensity, such as spots or eclipsing binaries. The combination of radius and true mass provides the mean density of the planet. In combination with models of planetary interiors, the inner structures of planets can be constrained.

The periodicity of transit events allows us to derive the orbital period and therefore orbital distance according to Kepler’s 3rd law. If the secondary eclipse can be detected, i.e. the planet disappears behind its host star, the orbital eccentricity can also be derived. Furthermore, the combination of transits with spectroscopic radial-velocity follow-up allows us to determine the alignment of the planetary orbital plane with the projected stellar rotation axis and the sense of orbital revolution of the planet around its star by the Rossiter-McLaughlin effect [244, 306].

High-precision light curves, such as those provided by the PLATO 2.0 mission, will allow us to detect exomoons and possibly even rings of Saturn-like exoplanets.

What makes the transit method a ‘gold-mine’ for planetary research is the ability to not only detect planets, but also characterize them physically. The prime planet parameters radius, true mass and therefore mean planet density have already been mentioned. Furthermore, photometric measurements of the stellar light reflected on the surface of the orbiting planet allow us to determine the planetary albedo. During secondary eclipse the emitted infrared flux can be derived and the planet’s effective temperature determined. Spectroscopic observations during primary transit and during secondary eclipse permit detection of atmospheric absorption by atoms and molecules in the planetary atmosphere. The analysis of the transit ingress and egress can be used to map the planetary atmosphere, at least for close-in hot giants.

In summary, transiting planets allow us to derive the following parameters of a planet:

∙ Orbit: – Period, semi-major axis, spin-orbit alignment

∙ Planet parameters: –radius, mass, density, constrain inner structure and composition

– effective temperature, albedo, atmospheric composition, surface heat distribution and reflectivity variations from phase curves for gas giants in IR and optical

– exomoons, planetary rings, Trojan objects

The main detection and characterization goal of PLATO 2.0 is focused on small, terrestrial planets, down to Earth-sized and smaller. An Earth-sized planet around a solar-like star causes a transit depth of about 0.008 %. It is obvious that high signal-to-noise-ratio (SNR) light curves are needed to detect such small signals and disentangle them from stellar activity. As an example, one can look at CoRoT-7b and Kepler-10b [23, 218] two planets slightly larger than Earth (1.6+/−0.1 REarth, Hatzes et al. [163] and 1.416+/−0.03 REarth, Batalha et al. [23], respectively) on short-period orbits (<1 day period), orbiting stars around 11 mag. Transits of both planets were clearly detected by the satellite telescopes and allowed determination of their radii. However, several transit events were co-added to achieve this precision. It is clear that brighter target stars must be screened when targeting small planets on long orbital periods. Furthermore, the investment of observing time to determine the planetary mass from radial-velocity measurements for such low-mass planets around faint stars is large and restricted to relatively bright host stars. This will be even worse for Earth-mass planets. This is the particular strength of the PLATO 2.0 mission which is designed to detect planets around bright stars in large numbers, allowing for such follow-up investigations and thereby providing statistical information on planet properties.

We furthermore note that planetary masses and radii cannot be determined independently from the properties of their host stars. For both of these parameters, the result is expressed in terms of the corresponding stellar parameter. The accuracy of the planetary parameters derived, therefore, is ultimately limited by our knowledge of the star. PLATO 2.0 addresses this key issue by performing asteroseismology analysis of all planet hosting stars in its main magnitude range (4–11 mag), thereby providing radii and masses with unprecedented accuracy. In addition, the asteroseismology analysis allows determining the age of stars, hence planetary systems, as accurate as 10 %.

A disadvantage of the transit method is the required transit geometry. The so-called geometrical probability is the probability to see a system edge-on. Table 3 provides some examples. The geometrical probability mainly scales with the orbital distance, a, of the planet as 1/a. It is around 10 % for a close-in hot Jupiter and decreases to about 0.5 % for a planet on a 1 year orbit like Earth. The transit event itself is always short compared to the orbital period of planets. Searching for transits therefore requires continuous coverage of planetary orbits not to miss the short transit events. PLATO 2.0 addresses these challenges of the transit method by providing a very large field-of-view (FoV) and many pointings on the sky covering a very large number of stars, combined with a flexible observing strategy.

Table 3 Examples for transit parameters in our Solar System, for the hot Jupiter planet CoRoT-1b [17, 145] and the super-Earths CoRoT-7b [218]

Full size table

1.2 A2 Asteroseismology: a technique for determining highly accurate stellar and planetary parameters

1.2.1 Properties of stellar oscillations

Modes of stellar oscillations can be described by spherical harmonics Yℓ,m(𝜃,ϕ) as functions of position (𝜃, ϕ) on the stellar surface. The eigenfrequencies ν n,,m are described by the three “quantum numbers” (n,,m), where n is the radial order, the latitudinal degree, and m azimuthal order of the spherical harmonic. For a spherical star there is no dependence on the azimuthal order m; but this degeneracy is broken by rotation and/or magnetic fields. For slow rotation, the frequencies ν n,ℓ,m=ν n,ℓ+m<Ω>, where m belongs to {−,}, and <Ω> is a weighted average of the interior rotation depending on the internal structure of the star and the particular eigenmode. This can be used to probe the internal angular velocity of the star. Measurements of modes with values only up to 3 are expected for PLATO 2.0 targets; since the stellar disk cannot be resolved the signal from modes of higher degree is strongly suppressed by averaging over regions with different oscillation phases.

The oscillation frequencies, including the rotational splitting, are found by fitting peaks in the power spectrum of the light curve. Determining frequencies of modes with _ℓ_=0,1,2,3 with the solar data is quite straightforward giving estimated errors <0.1 μHz, while for the 137 day run on HD 49385, we can extract frequencies with errors ∼0.3 μHz. The goal with the much longer monitoring to be performed with PLATO 2.0 is to achieve accuracies ∼0.1 μHz.

The power spectra show characteristic spacings between the peaks. These are usually described in terms of separations such as the large separations Δ =ν n,ν n_−1, between modes of the same degree and adjacent n values and the small separations, e.g., δ 02=ν n,0−_ν _n_−1,2 between the narrowly separated peaks corresponding to modes _ℓ_=0,2. Additionally we have the small separations δ 01=ν n,0−(ν _n_−1,1+ν n,1)/2. These are particularly valuable when only modes of degree _ℓ_=0,1 can be reliably determined. The separations provide diagnostic information on the stellar internal structure near the core and hence information on the age of the star. The large separations provide a measurement of the star’s acoustic radius, i.e., the travel time of a sound wave from the stellar centre to the surface, which is related to the stellar mean density ∼ M/R 3, while the small separations such as δ 01, δ 02 give diagnostics of the interior structure. Periodic modulations in the frequencies or separations give diagnostics of the location of the boundaries of convective cores and envelopes, as well as properties of the helium ionization zone (e.g., [14, 87, 174, 226, 249, 311]. The outer layers of the star are poorly understood and their contribution to the frequencies must be modeled or corrected for in the asteroseismic analysis [194, 308].

1.2.2 Asteroseismic inferences

From the frequencies determined from the power spectrum of the light curve we need to extract physical information. There are several techniques for this, the choice depending on the quality of the data and the type of information desired, ranging from overall properties such as mass and radius of the star to detailed information about its internal structure.

We first consider the case where the S/N ratio in the seismic data is insufficient to allow robust extraction of individual p mode frequencies; here it may still be possible to extract average estimates of the large and perhaps small separations < Δ0 >< Δ1 >, < _d_ 01 >, < _d_ 02 < and their ratios over one or more frequency ranges, owing to their regularity. For very low signal-to-noise data the mean large separation > Δ <, some indication of its variation with frequency, and possibly an average value of the small separation d 02, can be determined from frequency-windowed autocorrelation of the time series [263, 310, 312]. These average values provide a set of seismic data well-suited to constraining the exoplanet host star parameters (cf. [77]). Coupled with classical observations of L, T e f f , [Fe/H], log g delivered by Gaia (or even more precisely by other means) this has considerably better diagnostic power than the classical observables alone.

For most stars measurement of the average large separation should allow the stellar density to be constrained to a precision of several percent from model fitting (e.g., [388]). With an accurate knowledge of the effective temperature and/or luminosity, a seismic radius can be determined with a similar precision. The use of the average large separation together with the radius from Gaia can also provide a seismic mass with a precision higher than provided by the classical observables alone. For example, scaling relations relate the averaged large separation, > Δ_ν_ <, and the frequency at maximum power, _ν_ max, to the mass, radius and effective temperature of the star [193], leading to: \begin{array}{@{}rcl@{}} \frac{R}{R_{sun} }&=&\left({\frac{135~\mu \text{Hz}}{\left\langle {\Delta \nu} \right\rangle }} \right)^{2}\left({\frac{\nu_{\max } }{3050~\mu \text{Hz}}} \right)\left({\frac{T_{\mathit{eff}} }{5777K}} \right)^{1/2};\frac{M}{M_{sun} }=\left({\frac{135~\mu \text{Hz}}{\left\langle {\Delta \nu} \right\rangle }} \right)^{4}\\ &&\times\left({\frac{\nu_{\max } }{3050~\mu \text{Hz}}} \right)^{3}\left({\frac{T_{\mathit{eff}} }{5777K}} \right)^{3/2} \end{array}

where the radius and mass are normalized to the solar values.

Mass and radius determinations that are based on average seismic quantities will also be used to yield a first, very rapid determination of mass and radius for a large sample of stars. These seismic radii and masses will also serve as initial input for the more precise forward and inversion techniques described below.

Averaged oscillation quantities or individual frequencies can be used in forward model fitting which has been extensively used. Here one compares an observed data set with the predictions from a grid of evolutionary stellar models in order to find the model that best fits the observables (e.g., [2, 52, 245, 248]). The grid is composed of stellar models that are computed under a range of assumptions about the physical processes that govern stellar evolution. The search in the grid is restricted to satisfy the fundamental properties of the star (magnitude, effective temperature, gravity, metallicity, projected rotational velocity (mV, Teff, log g, [Fe/H], v sin i,..) and the oscillation observables. In practice one seeks to minimize the differences between observed and computed, seismic and non-seismic, parameters. Several methods can be used to carry out such minimization (see for instance [295, 350]). The unknown effect of the surface layers on the absolute values of the frequencies can be overcome by different techniques (e.g., [194, 308]). The best fit model then gives values for the mass, radius, age and internal structure of the stars. If individual frequencies are used the fit is typically overdetermined, and significant differences between the observed and model values may indicate inadequacies in the stellar modelling being used.

The minimum seismic information necessary in the fitting process can be estimated following Metcalfe et al. [245]. The authors found that with half a dozen surface-corrected frequencies available at each of _ℓ_=0 and _ℓ_=1, it becomes possible to constrain the model-dependent masses to within 3 %, and the corresponding ages that the star has spent on the main sequence to within 5 %, if the heavy-element abundances are known to within a factor of two. Note that this result assumes that the model physics is correct. With the addition of more frequency estimates (i.e., of _ℓ_=2 modes, and of more overtones) further improvement of the parameter uncertainties will be possible. For a main-sequence target observed at m V =11, we would expect to be able to measure more than ten overtones of its _ℓ_=0,1 and 2 frequencies.

Individual frequencies can de determined as in Appourchaux et al. [10]. When this is done, more precise and detailed information about the stars can also be obtained through inversion techniques.

The probably most suitable technique is model-independent and seeks to infer the internal density profile inside a star which best fits a set of observed frequencies (see e.g., [309] for more details on the technique. Alternative inversion techniques are described in e.g., [300]). Once we know the density profile, the total mass of the star can be simply computed as the integral of the density over the radius of the star. It is assumed that this will be determined from Gaia results. Note that the regions where the density is least well constrained make only a small contribution to the total mass: in the centre the radius r is small and in the outer layers the density is small. The resulting density profiles can then be compared with those predicted by stellar evolution models to estimate the evolutionary age of the star. The analysis is iterative, with the mass and radius for the initial model derived for instance from observed average seismic properties, as discussed above. It should also be stressed that the derivation of a model-independent mass requires that the radius R of the star is determined by non-seismic means. As mentioned earlier, radii of the PLATO 2.0 exoplanet host stars will be known to an accuracy better than 2 % thanks to Gaia, which translates into a well constrained model-independent exoplanet host star mass with a relative precision better than 2 %.

As a star evolves towards the end of, and beyond, the main sequence it becomes more centrally condensed. As a result, an increasing number of frequencies of oscillation modes behave like g modes in the core and p modes in the envelope (“mixed modes”). Their frequencies deviate from the regular spacing of asymptotic pure p modes and can therefore be identified. This behavior changes very quickly with stellar age, and the modes therefore yield a strong (though model-dependent) constraint on the age of the star. Both CoRoT and Kepler have observed stars presenting such modes (e.g., [95, 246]). For the non-seismic parameters, the largest source of observational uncertainty comes from the estimated heavy-element abundances. From the luminosity precision expected from Gaia, it would in principle be possible to constrain the abundances seismically to a precision of about 10 % [245], thus further improving the accuracy of the star’s mass and age.

1.2.3 Effects of rotation

As mentioned above, stellar rotation induces a splitting of the frequencies according to the azimuthal order m of the mode, by an amount which is essentially a weighted average of the internal rotation rate. The weight function (the so-called rotational kernel) can be determined given the inferred structure of the star. For predominantly acoustic modes most weight is given to the stellar envelope, with little dependence on the mode, and the rotational splitting thus predominantly gives an average of the rotation rate in the outer parts of the star. If in addition the surface rotation rate can be determined from spot modulation, as has been done in several cases from CoRoT and Kepler data (e.g., Nielsen et al. [273]), some indication can be obtained of the variation of rotation with depth. In evolved stars, on the other hand, the observation of mixed modes provides information about the rotation in the deep interior (e.g., [28, 96, 265]).

Equally important are the inferences that can be made from the amplitudes of the rotationally split components. Given the stochastic nature of the mode excitation, all components are expected to be excited to the same intrinsic amplitude, on average. However, the observed amplitudes depend on the inclination of the rotation axis relative to the line of sight [148]. If the rotation axis points towards the observer only the m_=0 modes are visible, while if it is in the plane of the sky only modes where ℓ_−_m is even are seen. For intermediate inclination all 2_ℓ+1 components are visible, and from their relative amplitudes the inclination can be inferred. This is particularly interesting in the case of stars where planetary systems have been detected using the transit technique, as will be the case for PLATO 2.0; here such observations can test the alignment or otherwise of the orbital planes of the planets with the stellar equator [69, 149].

Rights and permissions

About this article

Cite this article

Rauer, H., Catala, C., Aerts, C. et al. The PLATO 2.0 mission.Exp Astron 38, 249–330 (2014). https://doi.org/10.1007/s10686-014-9383-4

Download citation

Keywords